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Overview

The master equation of chemical reactions: a
difference-differential equation in D dimensions

The “weak” master equation

Reduced information: the reaction-rate equations, equations of

moments
Case-study in 9-D: a circadian clock

Detailed information: a discrete, adaptive spectral method based
on Charlier’s polynomials

Case-study in 2-D: a bistable problem

Conclusions
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Chemical systems

x € Z2 defines the state of a chemical system consisting of D

different species (x; is # of molecules of species number 7).

A reaction is a transition from state z, to state x:

T, =x+n, —> x, (1)
where n, is the transition step and where w, : Zf — R is the
probability for transition from step x, to x per unit time.

-R different reactions (w,,n,),r=1... R

-Unknown p(z,t) is the probability that the system is in state = at

time t
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The master equation...

...is then given by

R
PED S wetndpla ) - Y w@p(e.)
Hr; 120 m_?“;lzo
=: Mp, (2)

where the transition steps are decomposed into positive and negative

parts as n,, = n” +n.

-A difference-differential equation in D dimensions
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Multiple scales

e Macroscopic scale: deterministic equations for concentrations of

molecules

e Mesoscopic scale: stochastic equations for number of molecules of
different species or deterministic equations for probability

densities

e Microscopic scale: deterministic molecular dynamics; equations

for a few molecules
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A 2-D example
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Solution at times ¢ = 0, 100 and 400
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Solution methods

e Analytical expansions

e Reaction-rate equations for average values (average

concentrations)

e Stochastic methods for sampling a trajectory from the correct
probability distribution (Gillespie’s method)

e Approximation of the probability distribution: Fokker-Planck,

linear noise, ...
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The “weak” master equation

-Let X be the stochastic variable corresponding to the probability
distribution p

-Let T : Zf —— R be a suitable test-function, independent of time

Then,
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An immediate application

Let T'(x) = x;. Then

R R
d i i
S ElX] = =) mEw(X)] = =) njw, (E[X]) ()
r=1 r=1
The reaction-rate equations (expressed in number of molecules)

-A set of D ODEs (low complexity!), efficient and direct description

-Usually a good approximation when the number of molecules is

large, when the reaction constants are small, ...

-Approximation deteriorates when the stochastic noise makes a

difference, critical points, few molecules, ...

-Reduced information: knowledge of expectation values are not
sufficient for all systems
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Obvious generalization

Derive exact equations for the first few central moments, e.g. for the

Covariance matrix,

- Z LI — myyon (X)) + nd BI(X = mau (X)) +

+Zn n? Elw,(X)]. (6)

-Must approximate w, by (say) a polynomial

-Must also neglect the coupling to higher order moments
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Pros and cons

+ A set of O (D") ODEs where n is the highest order moment

+ Usually a good approximation even when the number of

molecules is quite small
+ Can be checked against itself
- Difficult to analyze, even for very simple systems

- Reduced information: for some systems, the exact shape of the

probability distribution is highly relevant
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Circadian clock

9 species, 18 reactions;
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ag | 50 | Ba |50 | 7w | 1| 6a | 10 | 6, | 50
o 1500 [ B | 5 |4 [ 1] 6m |05]6 | 100
a, | 0.01 v l2] 6, | 1
o’ 50 0, -

Table 1: Parameters of the circadian clock. The parameter 9, is varied
in the experiments.
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Results

-Solved using the equations for the first, the second and the third

order moments
-Implicit time integration

-Comparision with a stochastic simulation
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Figure 1: 0,

number of C molecules.

0.2. Solid: the number of R molecules, dashed:

the
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Figure 2: 9, = 0.1
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Figure 3: 0, = 0.08
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A motivating example

A
iz (8)
r — 0
If initial data is given as
ag _g
p(x,0) = —Fe™™, (9)

then it can be verified that the full dynamic solution is given by

a(t)”
x!

p(z,t) = e ), (10)

where a(t) = agexp(—ut) + k/pn - (1 —exp(—ut)).
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Charlier’s polynomials C¢(x)

Orthogonal w.r.t. the discrete scalar product
a® _,
(f.9)= ) f@)g(x)—e (11)
x>0
for a parameter a > 0.

Hence the Charlier functions C%(z) := C%(z) - y/a®/z! - exp(—a) are
orthogonal under

(f,9) =) fla)g(x). (12)

x>0
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A Galerkin spectral method with the Charlier functions as a basis is

possible (no continuous approximation)
Convergence is expected in the discrete {?-norm

Discrete Gauss-Charlier quadratures must be used for evaluating the
resulting rhs:

SIS = 3 flay)uwg + e (13)

x>0

Interestingly, the parameter a can be moved along with the solution,
providing for an “automatic adaptivity”
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Bistable problem
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(14)

— Expectation value or higher order moments are not a suitable

representation
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e The master equation is an accurate stochastic model of chemical

reactions in general

e In many cases, the reaction-rate equations produce useful results,

avoiding the curse of dimension

e Problems with reaction-rate equations can be cured to a certain
extent by solving for higher order moments, still avoiding the

curse of dimension

e When detailed information about the underlying probability
distribution is critical we have presented an effective and
adaptive spectral method

e Future aim: couple the methods!
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