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This talk also serves as an introduction to Lina Meinecke’s talk
“Stochastic Simulation of Diffusion on Unstructured Meshes via First Exit

Times” (next).
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1. Mesoscopic stochastic chemical kinetics

The buzz
Stochastic

Stochastic (Merriam-Webster Online Dictionary)
Greek stochastikos skillful in aiming, from stochazesthai to aim at, guess
at, from stochos target, aim, guess. Date: 1934.

1. Random; specifically: involving a random variable <a stochastic
process>.

2. Involving chance or probability: probabilistic <a stochastic model of
radiation-induced mutation>.
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1. Mesoscopic stochastic chemical kinetics

The buzz (cont)
Mesoscopic

Mesoscopic (Merriam-Webster)
No entries found. -Did you mean masochistic?

Mesoscopic scale (Wikipedia, Oct 2008)
In physics and chemistry, the mesoscopic scale refers to the length scale
at which one can reasonably discuss the properties of a material or
phenomenon without having to discuss the behavior of individual atoms,
and concepts of averages such as density and temperature are useful.
Page removed in 2010!

Mesoscopic physics (Wikipedia, Mar 2013)
There is no rigid definition for mesoscopic physics, but the systems studied
are normally in the range of 100nm (the size of a typical virus) to 1000nm
(the size of a typical bacterium).
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1. Mesoscopic stochastic chemical kinetics

Scales in modeling chemical reactions

System size Ω
(# molecules)

Model Idea

. 102 Micro Movement of individual atoms/molecules
Collisions → (Possible) reactions

∼ 101–106 Meso Non-individual, assuming well-stirred mixture
A stochastic model is used for reactions

& 106 Macro “Average”; —in the limit of many molecules

-With a mesoscopic viewpoint an accurate but still manageable
non-individual model is possible thanks to stochasticity.
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1. Mesoscopic stochastic chemical kinetics

Diffusion-controlled kinetics

Model Assumption

BD (Smoluchowski) Brownian motion of individual molecules
CTMC (Master equation) Non-individual, (locally) well-stirred
SDE (Langevin) Continuous approximation
ODE (Reaction rate) Continuous, deterministic
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1. Mesoscopic stochastic chemical kinetics Brownian motion

Brownian motion

Example: Particle in a fluid (Einstein 1905, & some others...).

A stochastic model is simpler but depends on randomness.
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1. Mesoscopic stochastic chemical kinetics (Bio-)Chemical kinetics

Stochastic modeling of biochemical reactions

Example: Bimolecular reaction X + Y → Z .

-What is the probability P(1X and 1Y reacts in the interval [0,∆t])?

X
Y

X

X

X

Y

Y

Y

X V

I P ∝ nX (“number of
X -molecules”)

I P ∝ nY

I P ∝ 1/V

I P ∝ ∆t

=⇒ P(X + Y → Z in the interval [0,∆t]) = const · nXnY ∆t/V .

Let ∆t → 0. Then it so happens that this receipt describes a
continuous-time Markov chain.
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1. Mesoscopic stochastic chemical kinetics (Bio-)Chemical kinetics

Well-stirred kinetics

Assumption #1: the chance of finding a molecule is equal throughout the
volume (homogeneous).
Assumption #2: the energy of a molecule does not depend on its position
in the volume (thermal equilibrium).

-Let the state vector x ∈ ZD
+ count the number of molecules of each of D

species.
-Let R specified reactions be defined as transitions between these states,

x
wr (x)−−−→ x − Nr , N ∈ ZD×R (stoichiometric matrix)

where each transition intensity or propensity wr : ZD
+ → R+ is the

probability of reacting per unit of time. This probability can be shown to
exist provided that the system is well-stirred!
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1. Mesoscopic stochastic chemical kinetics (Bio-)Chemical kinetics

“Direct method”
(Doob ∼’45, Gillespie ’76)

Simulate a single stochastic trajectory X (t) “an outcome”:

0. Let t = 0 and set the state x to the initial number of molecules.

1. Compute the total reaction intensity W :=
∑

r wr (x). Generate the
time to the next reaction τ := −W −1 log u1 where u1 ∈ (0, 1) is a
uniform random number. Determine also the next reaction r by the
requirement that

r−1∑
s=1

ws(x) < Wu2 ≤
r∑

s=1

ws(x),

where u2 is again a uniform random deviate in (0, 1).

2. Update the state of the system by setting t := t + τ and x := x −Nr .

3. Repeat from step 1 until some final time T is reached.
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1. Mesoscopic stochastic chemical kinetics (Bio-)Chemical kinetics

Kolmogorov’s forward differential system/Master equation
(Kolmogorov ’31, Nordsieck/Lamb/Uhlenbeck ’40)

With states x ∈ ZD
+, let p(x , t) := P(X (t) = x |X (0)). Then the chemical

master equation (CME) is given by

∂p(x , t)

∂t
=

R∑
r=1

wr (x + Nr )p(x + Nr , t)−
R∑

r=1

wr (x)p(x , t)

=:Mp.

-A gain-loss discrete PDE in D dimensions for the probability density
conditioned upon an initial state.
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2. Mesoscopic stochastic spatial chemical kinetics

Inhomogeneous kinetics

Not well-stirred:

I When the molecular movement (diffusion) is slow compared to the
reaction intensity — large local concentrations may easily build up.

I When some reactions are localized — e.g. depend on an enzyme
emitted from a precise position, or are located to, say, a membrane.

These conditions are not unusual for reactions taking place inside living
cells!
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2. Mesoscopic stochastic spatial chemical kinetics

Mesoscopic spatial kinetics

-Not well-stirred in the whole volume, but if the domain Ω is subdivided
into smaller computational cells Ωj such that their individual volume |Ωj |
is small, then diffusion suffices to make each cell well-stirred.

Figure: Primal mesh (solid), dual mesh (dashed). The nodal dofs are the # of
molecules in each dual cell.
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2. Mesoscopic stochastic spatial chemical kinetics

Mesoscopic spatial kinetics (cont)

I D chemically active species Xij for i = 1, . . . ,D but now counted
separately in K cells, j = 1, . . . ,K .

I The state of the system is now an array x with D × K elements.

I This state is changed by chemical reactions occurring between the
molecules in the same cell (vertically in x) and by diffusion/transport
where molecules move to adjacent cells (horizontally in x).
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2. Mesoscopic stochastic spatial chemical kinetics

Reactions

By assumption, each cell is well-stirred and consequently the master
equation is valid as a description of reactions,

∂p(x, t)

∂t
=Mp(x, t) :=

K∑
j=1

R∑
r=1

wr (x·j + Nr )p(x·1, . . . , x·j + Nr , . . . , x·K , t)

−
K∑
j=1

R∑
r=1

wr (x·j)p(x, t).
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2. Mesoscopic stochastic spatial chemical kinetics

Diffusion

A natural model of diffusion from one cell Ωk to another cell Ωj is

Xik
qkjxik−−−→ Xij ,

where qkj is non-zero only for connected cells.
-Ideally, qkj should be taken as the inverse of the mean first exit time for a
single molecule of species i from cell Ωk to Ωj . =⇒ qkj ∝ σ2/h2, where
σ2/2 is the macroscopic diffusion, h the local length. (Meinecke’s talk)
The diffusion master equation can then be written

∂p(x, t)

∂t
=

D∑
i=1

K∑
k=1

K∑
j=1

qkj(xik + Mkj ,k)p(x1·, . . . , xi · + Mkj , . . . , xD·, t)

−qkjxikp(x, t) =: Dp(x, t).

The transition vector Mkj is zero except for Mkj ,k = −Mkj ,j = 1.
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2. Mesoscopic stochastic spatial chemical kinetics

The reaction-diffusion master equation
“RDME”

Combining reactions with diffusions,

∂p(x, t)

∂t
= (M+D)p(x, t).

-An approximation! Valid when

ρ2 � h2 � σ2τ∆,

ρ the molecular radius, τ∆ average molecular survival time.
-Once formulated, any algorithm for sampling from the CME can also
simulate the RDME. For a spatially resolved model, most of the simulation
time is spent on diffusion events.
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2. Mesoscopic stochastic spatial chemical kinetics Unstructured meshes

Unstructured meshes

-Mean first exit time only known for very simple geometries (e.g. circles).
-How to handle complicated geometries? Attempt to converge in
expectation to the macroscopic diffusion equation. A numerical method
applied to ut = σ2/2 ∆u yields the discretized form

du

dt
=
σ2

2
Du.

-Define ϕij = E Ω−1
j xij . By linearity of the diffusion intensities, the

diffusion master equation implies

dϕij

dt
=

K∑
k=1

|Ωk |
|Ωj |

qkjϕik −

(
K∑

k=1

qjk

)
ϕij ,

⇐⇒
dϕT

i ·
dt

= QϕT
i · .
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2. Mesoscopic stochastic spatial chemical kinetics Finite elements/volumes
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2. Mesoscopic stochastic spatial chemical kinetics Finite elements/volumes

FEM vs. FVM
An insane summary

Consider the strong formulation ut = ∆u in Ω,

1. Variational form (Green’s
theorem): find u ∈ V
s.t. (v , ut) = −(∇v ,∇u) for
∀v ∈ V , where
(f , g) ≡

∫
Ω fg dx .

2. A FEM is obtained by
approximating
V ≈ Vh = spaniϕi ⊂ V .

3. With uh =
∑

i ui (t)ϕi we get
Mut = −Au; Mij = (ϕi , ϕj),
Aij = (∇ϕi ,∇ϕj).

1. Integrating over the ith finite
volume and invoking the
divergence theorem we get∫
ωj

ut dx =
∫
∂ωj

n · ∇u da.

2. Approximating ∇ with a
difference and defining uj as a
volume average this gives
|ωj |d/dt uj =∑

k |∂ωjk ||ejk |−1(uk − uj), ejk
the distance between nodes j
and k.
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3. Questions of convergence

Weak convergence

Observation: by linearity, the diffusion CTMC on the unstructured grid has
an expected value which coincides with the exact solution to the
deterministic numerical method.
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3. Questions of convergence

FEM convergence
Mut = −Au or ut = −M−1Au ≈ −M̃−1Au =: Du.
1) Converges in L2, ‖uh − u‖ = O(h2) as h→ 0, under very mild
assumptions on the mesh.
2) Under stringent conditions on the mesh, the maximum principle holds.

α

β

(a) α + β < π

α

(b) α < π/2

These conditions are needed to ensure that

Djk ≥ 0, Djj < 0,
K∑

k=1

Djk = 0.
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3. Questions of convergence

FVM convergence

|ωj |d/dt uj =
∑

k |∂ωjk ||ejk |−1(uk − uj)

1) The maximum principle always holds.
2) If the mesh is a Delaunay triangulation, the method converges as
‖uh − u‖ = O(h2). Unfortunately (in 3D) such meshes have a very poor
quality except for very simple geometries. Then the “C ” in O(h2) is very
large.
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3. Questions of convergence

On balance...

-With a (very) good mesh both methods converge as h→ 0 and satisfy
the maximum principle.

-With an “average” mesh, (truncated) FEM seems to have an accuracy
edge to FVM and is also amenable to backward analysis: the solution
satisfies exactly a perturbed equation ut = ∇ · (σ̃2(x)/2×∇u) where
‖σ̃ − σ‖ is small and localized (Meinecke’s talk).

-Challenges: (i) convergence in distribution — retrieving the correct
Brownian motion, (ii) convergence with reactions, (iii) getting to grip of
when it matters...
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4. Sample spatial effects Stochastic focusing

Stochastic focusing

Enzymatic reaction of a complex into a product,

C + E
ν C ·E−−−→ P + E .

Combine with

∅
kE


µEE

E , ∅
kC


µCC

C , P
µPP−−→ ∅.

-Interested in kE → (1 + δ) · kE . Example: take δ = −1/2.
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4. Sample spatial effects Stochastic focusing

Results in 0D (well-stirred)
Deterministic equations

0 1 2 3 4 5

5

10

15

20

t

C

Expected: factor of 2 increase.
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4. Sample spatial effects Stochastic focusing

Results in 0D (well-stirred)
Stochastic equations - stochastic focusing effect

0 2 4 6 8 10

10

20

30

40

t

C
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4. Sample spatial effects Stochastic focusing

Results in 1D
Setup

h

di�usion

1

1

1

x

y
z

-Diffusion σ along the x-axis
(assumed well-stirred in each
yz-plane).

-In this case we compare with an
“unperturbed case” with a
birth-rate kE/2 · (1 + 2x).
I.e.

∫
kEdV is unaffected and we

can think of this as a spatial
stochastic focusing.
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4. Sample spatial effects Stochastic focusing

Results in 1D (cont)
Spatial profile

0 1/2 1
0
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E
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T
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0 1/2 1
0
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C2

E
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T
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σ=1/20

σ=2/20

σ=1/2

σ=3/4

σ=1
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4. Sample spatial effects Stochastic focusing

Results in 1D (cont)
Global effect is ∼10% increase

0 1 2 3 4 5 6 7 8 9 10
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C1
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4. Sample spatial effects Bistability

Bistable system, 2 competing species
Well-stirred

A simple model of two mutually cooperatively repressing gene products X
and Y . Relying on adiabatic approximations the model is

∅ a/(b+y2)−−−−−→ X ∅ c/(d+x2)−−−−−−→ Y

X
µx−→ ∅ Y

µy−→ ∅

2 species/dimensions: the CME is a feasible approach.
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4. Sample spatial effects Bistability

(c) Solution to the master equation,
discrete spectral method.

(d) Stochastic simulation.
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4. Sample spatial effects Bistability

Bistable double-negative feedback system
Spatial

EA
k1−→ EA + A EB

k1−→ EB + B

EA + B
ka


kd

EAB EB + A
ka


kd

EBA

EAB + B
ka


kd

EAB2 EBA + A
ka


kd

EBA2

A
k4−→ ∅ B

k4−→ ∅

Slow/fast diffusion in a simple model of an S. cerevisiae cell with internal
structures in the form of a nucleus and a large vacuole. Molecules are not
allowed to diffuse across the membranes and enter the organelles.
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4. Sample spatial effects Bistability

(e) Species A. (f) Species B.

www.urdme.org.
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4. Sample spatial effects Bistability

0 200 400 600 800 1000
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A B

(g) σ2 = 2 × 10−13
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A B

(h) σ2 = 4 × 10−13

Figure: The total number of A and B molecules as the diffusion constant is
varied. Right: local bistability is lost.

S. Engblom (Uppsala University) The D in RDME 140615 35 / 36



Conclusions

Summary

I Well stirred case: stochastic mesoscopic modeling in chemical kinetics
can combine simplicity with accuracy

I Spatially inhomogeneous case:
-microscopic kinetics usually very expensive
-local well-stirredness implies the reaction-diffusion master equation
-the RDME is a computationally feasible alternative

I Unstructured meshes: consistency with macroscopic equations, and
with microscopic diffusion. The numerical method’s convergence to
the macroscopic equation implies weak convergence of the
corresponding stochastic model.

I Free software URDME (www.urdme.org). Currently relying on
Matlab+Comsol.
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