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Summary

Joint work with and/or input from:

I Mia Phillipson, Gustaf Christoffersson, Femke Heindryckx @ Medical Cell Biology,
Uppsala university

I Ruth Baker, Dan Wilson @ Math Institute, University of Oxford

I Augustin Chevallier @ ENS Cachan/INRIA Sophia Antipolis

I Jonas R. Umaras @ Scientific computing, Uppsala university
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Intro: data for inspiration & the modeling challenge

Wound healing around transplant
Recruitment of white blood-cells (gradient sensing)
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Intro: data for inspiration & the modeling challenge

Quorum sensing
Synthetic circuit in vivo from Danino, et al., Nature 463, 2010
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Intro: data for inspiration & the modeling challenge

The modeling challenge
“How to think”

Aim: realistic and useful computational models of populations of living
cells.

“Realistic” flexible and understandable (= analyzable) numerical models,
that in perspective can incorporate all relevant processes

“Useful” (1) explanatory (incl. emergent behavior), (2) test
hypotheses, (3) predictive value, (4) help to build an
argument in cases where many factors are unknown

(1) is about modeling consistency & power, (2)+(3)+(4) mainly about
being able to incorporate data and about simulation performance
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Intro: data for inspiration & the modeling challenge

Rest of the talk

1. Computational modeling: aim for a single scalable framework

2. Analysis in that framework: propagation of uncertainties & errors

3. Illustrations
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1. Computational modeling...

Computational modeling
inner-outer idea

Immediate idea: one type of model describing an individual cell (“inner
scale”), coupled together with a population level model (“outer scale”).

Challenge: the aim is a single (analyzable) framework. So: {inner workings
of singel cells, sensatory input/output, extracellular space, population
mechanics, ...} — also fast!
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1. Computational modeling...

The idea 1
inner scale: RDME

Inside a cell, reactions and diffusion
of various molecules take place.

The rates for these events
determines what happens and when
in a stochastic, event-driven
simulation.

repeat
pick a random number
sample what happens and when
execute this event

until done
www.urdme.org
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1. Computational modeling...

One model to rule them all?
(cont)

-Cells are also discrete noisy objects, occuping space. Is there a
“cell-population RDME”?

-Differences: cells move due to (1) mechanics/pushing, (2) active
movements/crawling, and (3) experience adhesion.

(Uppsala University) Bridging the scales... 190930 ENUMATH 9 / 26



1. Computational modeling...

The idea 2
outer scale

Cellular pressure, propagated by a connecting spring model. The “flow” of
cells is driven by a gradient in this pressure (Darcy’s law).
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1. Computational modeling...

The idea 2
outer scale: DLCM

From three basic assumptions:

1. thermal movements are ignored

2. rapid equilibrium of pressure

3. movements only into less
crowded voxels

one derives a (discrete) Laplacian
with certain BCs and source terms.
Hence rates... hence events in
continuous time.

“Discrete Laplacian Cell Mechanics” (DLCM).

“Darcy’s Law Cell Mechanics”...
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1. Computational modeling...

Coupling of scales

Observation #1: whenever both the inner scale and the outer scale are
formed in continuous time, there is one and only one way of correctly
coupling them together.

Observation #2: the two types of models can be expected to take place at
different temporal scales. Approximation: evolve the inner scales one step
in time (e.g., in parallel), then connect at the outer scale.

-In fact, one can think of all sorts of computational tricks like this. Often:
accept a small(?) error for computational efficiency.
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2. ...numerical analysis

Analysis: a priori
Long story, but short

-Useful computational frameworks should allow for error estimates of
various approximations.

Notation: Xij =#molecules of species i in voxel j (RDME-style, but a
similar notation for the DLCM works), ‖X‖2 ≡

∑
i ,j X2

ij .

=⇒ a priori : with suitable initial data and under certain assumptions on
the model formulation and the rates, one can show that the problem is
strongly well-posed, i.e., X exists and behaves well.
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2. ...numerical analysis

Analysis: Multiscale variable splitting
Set-up: ε, h

Consider a separation of scales:

I species are either abundant ∼ ε−1, or appear in low copy numbers ∼ 1

I rate constants are either fast ∼ 1, or slow ε

=⇒ rescaled variable X̄(t) ∼ 1.

Multiscale splitting methods:

“Hybrid”, Ȳ(t) all stochastic processes driving an abundant species are
replaced with mean drift terms, a “deterministic-stochastic
hybrid”

“Numerical”, Ȳ(h)(t) discrete step h; low copy number variables are first
simulated in [t, t + h) letting abundant species be frozen at
time t, next abundant species are integrated in [t, t + h)
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2. ...numerical analysis

Analysis of errors
Results

For certain explicit exponents (u, v)...

Multiscale error
Under certain assumptions,

I E[‖Ȳ(t)− X̄(t)‖2] = O(ε1+v + ε1/2+v/2+u)

Time-discretization error
Under the same assumptions, then if the processes are bounded,

I E[‖Ȳ(h)(t)− Ȳ(t)‖2] = O
(
h(ε2u + εu+v )

)
+ O

(
h2ε2v

)
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2. ...numerical analysis

Example: catalytic process
“Stress test” of theory

(A,C) ∼ ε−1, (B,D) ∼ 1, diffusionA,C ∼ ε, diffusionB,D ∼ 1.

A + B
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2. ...numerical analysis

Proposed modeling framework
RDME & DLCM

Outer scale DLCM, pressure-driven (passive) cellular movements

Inner scale ODEs, SDEs, or the RDME for the highest resolution

-Clearly doable: analyze an inner/outer RDME/DLCM split-step method
following the outlined RDME theory.
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3. Worked examples

Non-trivial dynamics in tumour
Mambili-Mamboundou et al., Math. Bio. 249, 2014, & Chaste
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3. Worked examples

Non-trivial dynamics in tumour
Inner scale: non-spatial stochastic, outer scale: spatial stochastic

-Finding (emergent behavior): increasing the surface means increasing
oxygen intake =⇒ steady-state is unstable.
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3. Worked examples

Ongoing work...
ABC parameter inversion of tumour model

P2A =1.157

AR =2.023

PR =1.575

0 1 2 3 4

prol
 / ref

prol

0

5

10

15

20

25

2

2   SD
Ref. value

P2A =1.073

AR =1.269

PR =1.429

0.4 0.6 0.8 1 1.2 1.4

death
 / ref

death

0

5

10

15

20

25

2

(Uppsala University) Bridging the scales... 190930 ENUMATH 20 / 26



3. Worked examples

Pattern formation: Notch Delta
In vivo results from Cohen, et al., Cell 19, 2010

addition, we have compared the results of this in vivo analysis

with the results of a quantitative in silico model of Delta-Notch

signaling. This systems analysis establishes intermittent cell-

cell signaling mediated via dynamic actin-based basal filopodia

as a critical factor in the gradual refinement of the pattern during

lateral inhibition, something that is hard to achieve through con-

tinuous signaling. The result is the formation of a well-ordered

pattern of gene expression, as a prelude to mechanosensory

organ differentiation.

RESULTS

Gradual Refinement of the Bristle Precursor Pattern
By cutting a small window in the opaque pupal case, it is possible

to image the development of green fluorescent protein (GFP)-

labeled Drosophila pupae live, with relative ease (Renaud and

Simpson, 2002). Using this approach we were able to follow

the process of lateral inhibition in the hours after the cuticle is

laid down, at 12 hr APF (Figures 1A–1D).

Previous work has used markers in fixed tissue to show that

bristle patterning within the dorsal thorax of the fly is initiated

at�8 hr APF and is largely complete prior to the onset of the rela-

tively synchronous asymmetric bristle precursor cell divisions at

�16 hr APF (Usui and Kimura, 1993). These studies have also

shown that bristle patterning is mediated by Notch-Delta-depen-

dent lateral inhibition, since Notch signaling is required to

prevent excess bristle formation up until�15 hr APF (Hartenstein

and Posakony, 1990). To follow his process live, we used Neural-

ized-Gal4, UAS-MoesinGFP (hereafter called Neu-GFP) as a

marker of precursor cell patterning (Boulianne et al., 1991). At

the same time, ubiquitously expressed E-Cadherin-GFP was

used to visualize apical cell-cell junctions in the tissue (Figures 1A

and 1B). Because of the time required for GFP expression and

folding (which we estimate as �1.5 hr, see below) the pattern

detected using Neu-GFP necessarily represents a view of

recently past events. Nevertheless, because very few cells in

the pupal notum divide before 16 hr APF (Hartenstein and Posak-

ony, 1989), it is possible to use this approach to follow the late

stages of lateral inhibition-mediated patterning (from �10.5 hr

APF to 16 hr APF).

It was clear from live imaging that cell movement contributes

little to the development of a well-ordered pattern during this

period of development (compare the pattern in Figure 1B at

14 hr APF with the pattern in Figure 1B’ at 26 hr APF; see Figures

S1A–S1C, available online). Significantly, however, when we

tracked the fates of GFP-labeled cells in individual animals

(labeled in Figure 1B and quantified for two representative

animals in Figure 1C), a gradual process of refinement was

observed as the initially disordered pattern steadily improved

with time (Figures 1A–1C; Figures S1A–S1C). Thus, at 12 hr

APF Neu-GFP was first seen within a relatively sparsely spaced

subpopulation of Cadherin-GFP marked epithelial cells (which

express Sanpodo, Cut, and Senseless, Figures S1D–S1G). By

14 to 16 hr APF this array of GFP-positive cells expressing

proneural markers appeared overcrowded and poorly organized

(Figures 1A–1C; Figures S1A–S1C). A well-ordered pattern then

emerged after 16 hr APF, as �25% of Neu-GFP cells residing in

densely packed regions of the notum downregulated proneural

gene expression (arrows in Figures 1A; blue cells in Figure 1B;

Figure S1). This led to a significant increase in the spacing of cells

destined to take on a sensory organ precursor (SOP) fate (as

measured by the expression of Neu-GFP, Sanpodo, Cut, and

Senseless) (Figure S1) and an accompanying 2.5-fold reduction

in the variance of the spacing of Neu-GFP cells (from 2.0 at 16 hr

APF to 0.8 at 26 hr APF) (Figure 1D).

The end of this period of refinement was concomitant with a

burst of cell division in the tissue. This led to a large number of

Neu-GFP positive cells now lacking markers of bristle precursor

identity (Figure S1) undergoing symmetrical epithelial divisions

(small arrow, Figure 1A00 0, and weak GFP-labeled epithelial cell
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Figure 1. Gradual Refinement of the Bristle

Precursor Pattern in the Drosophila Notum

(A–A00 00 0 ) A row of Neu-GFP cells is shown as the

pattern refines over pupal development within an

E-Cadherin-GFP labeled epithelium. Small arrows

indicate Neu-GFP cells that fail to become bristle

precursors. Large arrow indicates the late appear-

ance of a bristle precursor in place of an adjacent

one that was poorly positioned.

(B–B0) Cells marked in red develop into bristle

precursor cells, those in blue lose proneural gene

expression, and cells marked green are basally

extruded.

(C) Graphs show total number of Neu-GFP cells

(black), cumulative Neu-GFP count (blue), cells

that have lost Neu-GFP expression (green), or

were basally extruded (red) during development

in two flies.

(D) Changes in mean cell spacing and variance

(represented by error bars) during development

for three Neu-GFP flies (at 14 and 26 hr APF).

Epithelial adherens junctions are labeled with a

ubiquitously expressed E-Cadherin-GFP. Scale

bars = 10 mm. APF = After pupa formation.

Neu-GFP = Neuralized-GAL4, UAS Moesin-GFP.

(See Figure S1).

Developmental Cell

Dynamic Filopodia Promote SOP Pattern Refinement

Developmental Cell 19, 78–89, July 20, 2010 ª2010 Elsevier Inc. 79
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3. Worked examples

Protrusions
In vivo results from Cohen, et al., Cell 19, 2010

modes of contact-mediated cell-cell communication on bristle

precursor spacing. The model is schematized in Figure 5A. It

comprises a row of adjacent cells that are assigned apical

cell-cell interfaces (A), basal lamellipodia (L), and filopodia (F),

whose length distributions and dynamics were taken directly

from biological data (Figure S4E). We focused our analysis on

four potential mechanisms of signaling illustrated in Figure 5A:

(1) signaling across apical adherens junctions, (2) lamellipodia

to lamellipodia signaling, (3) filopodia to lamellipodia signaling,

and (4) filopodia to filopodia signaling.

The algorithm used to model these different modes of intercel-

lular Notch-Delta signaling based on equations 1 to 3, above, is

described in Table S1. For this analysis, filopodia were modeled

based upon an average lifetime, and a characteristic length and

variation in length derived from experimental data. Although

stable patterns emerge in each case (Figure 5B), Delta-express-

ing cells remain densely packed in simulations modeling apical

or lamellipodial signaling. When we modeled static filopodia

(by fixing the distribution of protrusion lengths implemented at

the first time step for the entire simulation), the mean spacing

was 3.8 ± 0.04 cell diameters, well below the lower limit of

spacing observed in wild-type flies, and patterns of Delta-ex-

pressing cells were poorly ordered (Figure 5B).

Significantly, however, when we simulated realistic filopodia

(based on data in Figure S4, Filopodia length = F_ m = 1.4 cell

diameters, standard deviation = F_s = 0.3 and F_rate = 0.01,

equivalent to a mean filopodial lifetime of 100 time steps in the

model and �500 seconds of developmental time for a pattern

that stabilizes within 7.5 hr), the model was found to generate

a stable pattern very close to that observed in flies (final spacing

in the model was 4.5 ± 0.04 cell diameters between precursor

cells, as compared with 4.6 ± 0.09 in the fly). As shown for the

model of apical signaling (Figure S3), this result was extremely

robust to changes in parameter values governing Notch-Delta

signaling itself (data not shown). As expected, the inclusion of

protrusions in simulations also removed the bias seen in models

of apical signaling against cells with small apical domains

becoming bristle precursors (data not shown).

Similar results were obtained using equivalent two-dimen-

sional (2D) models that enable nonneighboring cells to signal
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Figure 4. Filopodial to Filopodial Touching Precedes Bristle Precursor Pattern Refinement

(A–A00) An apical-basal scan through the epithelial monolayer of Neu-GFP flies during patterning (distances from the apex as labeled) reveals basal lamellipodial

and filopodial extensions.

(B–B00 00) Basal filopodia are dynamic and exhibit lifetimes of �500 s (data not shown).

(C–F) Apical (C and E) and basal (D and F) confocal slices showing basal interactions between cells that precede apoptosis (arrow C00) or a symmetric cell division

(arrow E’) by �3 hr as measured using the Gal4-UAS system. (See Figure S6).

Developmental Cell

Dynamic Filopodia Promote SOP Pattern Refinement

Developmental Cell 19, 78–89, July 20, 2010 ª2010 Elsevier Inc. 83
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3. Worked examples

Protrusion interactions model
In silico model from Hadjivasiliou, et al., J. R. Soc. Interface 13, 2016

A B

C

Direct (neighbor↔neighbor), via protrusions (A↔B), and non-symmetric (B↔C).
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3. Worked examples

Delta-notch: differential weighting of signals
Inner scale: spatial stochastic, outer scale: spatial stochastic
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Summary

Summary

I Microscopy data, mostly for inspiration...

I “How to think”: realistic & useful models, through
flexible/understandable/generalizable

I 1. Modeling: inner/outer scale, RDME/DLCM one suitable such
combination, consistency through time-continuous coupling,
event-based computational framework (fast!)

I 2. Analysis: the RDME framework, stability, analysis of basic
numerical methods, doable: bring this to the RDME/DLCM
combination.

I 3. Examples: flexible coupling cell-to-cell/cell-to-environment
(solutions in URDME @ GitHub, www.urdme.org)
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Summary

Thanks

Programs, Papers, and Preprints are available from my web-page.
Thank you for the attention!
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