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Today

Agenda: give an overview of computational stochastic modeling in
(bio-)chemical kinetics, specifically targeting cell biology. I also like to
discuss some different possibilities for inverse formulations (“given
observations, find the model”).
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1. Stochastic modeling Brownian motion

Brownian motion
Einstein 1905, & some others...

Example: Particle in a fluid.

A stochastic model is simpler but depends on randomness.
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1. Stochastic modeling (Bio-)Chemical kinetics

Stochastic modeling of biochemical reactions

Example: Bimolecular reaction X + Y → Z .

-What is the probability P(1X and 1Y reacts in the interval [0,∆t])?

X
Y

X

X

X

Y

Y

Y

X V

I P ∝ nX (“number of
X -molecules”)

I P ∝ nY

I P ∝ 1/V

I P ∝ ∆t

=⇒ P(X + Y → Z in the interval [0,∆t]) = const · nXnY ∆t/V .

It so happens that this receipt describes a continuous-time Markov chain.
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1. Stochastic modeling (Bio-)Chemical kinetics

Well-stirred kinetics

Assumption #1: the chance of finding a molecule is equal throughout the
volume (homogeneous).
Assumption #2: the energy of a molecule does not depend on its position
in the volume (thermal equilibrium).

-State vector x ∈ ZD
+ counting the number of molecules of each of D

species.
-R specified reactions defined as transitions between these states,

x
wr (x)−−−→ x − Nr , N ∈ ZD×R (stoichiometric matrix)

where each transition intensity or propensity wr : ZD
+ → R+ is the

probability of reacting per unit of time.
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1. Stochastic modeling (Bio-)Chemical kinetics

Simulating the chain
(Doob ∼’45, Gillespie ’76)

Simulate a single stochastic trajectory X (t) “an outcome”:

0. Let t = 0 and set the state x to the initial number of molecules.

1. Compute the total reaction intensity W :=
∑

r wr (x). Generate the
time to the next reaction τ := −W−1 log u1 where u1 ∈ (0, 1) is a
uniform random number. Determine also the next reaction r by the
requirement that

r−1∑
s=1

ws(x) < Wu2 ≤
r∑

s=1

ws(x),

where u2 is again a uniform random deviate in (0, 1).

2. Update the state of the system by setting t := t + τ and x := x −Nr .

3. Repeat from step 1 until some final time T is reached.
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1. Stochastic modeling (Bio-)Chemical kinetics

Kolmogorov’s forward differential system/Master equation
(Kolmogorov ’31, Nordsieck/Lamb/Uhlenbeck ’40)

With states x ∈ ZD
+, let p(x , t) := P(X (t) = x |X (0)). Then the chemical

master equation (CME) is given by

∂p(x , t)

∂t
=

R∑
r=1

wr (x + Nr )p(x + Nr , t)−
R∑

r=1

wr (x)p(x , t)

=:Mp.

-A gain-loss discrete PDE in D dimensions for the probability density
conditioned upon an initial state.
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1. Stochastic modeling Spatial chemical kinetics

Inhomogeneous kinetics

Not well-stirred:

I When the molecular movement (diffusion) is slow compared to the
reaction intensity — large local concentrations may easily build up.

I When some reactions are localized — e.g. depend on an enzyme
emitted from a precise position, or are located to, say, a membrane.

These conditions are not unusual for reactions taking place inside living
cells!
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1. Stochastic modeling Spatial chemical kinetics

Mesoscopic spatial kinetics

-Not well-stirred in the whole volume, but if the domain Ω is subdivided
into smaller computational cells Ωj such that their individual volume |Ωj |
is small, then diffusion suffices to make each cell well-stirred.

Figure: Primal mesh (solid), dual mesh (dashed). The nodal dofs are the # of
molecules in each dual cell.
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1. Stochastic modeling Spatial chemical kinetics

Mesoscopic spatial kinetics (cont)

I D chemically active species Xij for i = 1, . . . ,D but now counted
separately in K cells, j = 1, . . . ,K .

I The state of the system is now an array x with D × K elements.

I This state is changed by chemical reactions occurring between the
molecules in the same cell (vertically in x) and by diffusion/transport
where molecules move to adjacent cells (horizontally in x).
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1. Stochastic modeling Spatial chemical kinetics

Reactions

By assumption, each cell is well-stirred and consequently the master
equation is valid as a description of reactions,

∂p(x, t)

∂t
=Mp(x, t) :=

K∑
j=1

R∑
r=1

wr (x·j + Nr )p(x·1, . . . , x·j + Nr , . . . , x·K , t)

−
K∑
j=1

R∑
r=1

wr (x·j)p(x, t).
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1. Stochastic modeling Spatial chemical kinetics

Diffusion

A natural model of diffusion from one cell Ωk to another cell Ωj is

Xik
qkjxik−−−→ Xij ,

where qkj is non-zero only for connected cells.

-Ideally, qkj should be taken as the inverse of the mean first exit time for a
single molecule of species i from cell Ωk to Ωj . =⇒ qkj ∝ σ2/h2, where
σ2/2 is the macroscopic diffusion, h the local length.
The diffusion master equation can therefore be written

∂p(x, t)

∂t
=

D∑
i=1

K∑
k=1

K∑
j=1

qkj(xik + Mkj ,k)p(x1·, . . . , xi · + Mkj , . . . , xD·, t)

−qkjxikp(x, t) =: Dp(x, t).

The transition vector Mkj is zero except for Mkj ,k = −Mkj ,j = 1.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 13 / 42



1. Stochastic modeling Spatial chemical kinetics

Diffusion

A natural model of diffusion from one cell Ωk to another cell Ωj is

Xik
qkjxik−−−→ Xij ,

where qkj is non-zero only for connected cells.
-Ideally, qkj should be taken as the inverse of the mean first exit time for a
single molecule of species i from cell Ωk to Ωj . =⇒ qkj ∝ σ2/h2, where
σ2/2 is the macroscopic diffusion, h the local length.

The diffusion master equation can therefore be written

∂p(x, t)

∂t
=

D∑
i=1

K∑
k=1

K∑
j=1

qkj(xik + Mkj ,k)p(x1·, . . . , xi · + Mkj , . . . , xD·, t)

−qkjxikp(x, t) =: Dp(x, t).

The transition vector Mkj is zero except for Mkj ,k = −Mkj ,j = 1.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 13 / 42



1. Stochastic modeling Spatial chemical kinetics

Diffusion

A natural model of diffusion from one cell Ωk to another cell Ωj is

Xik
qkjxik−−−→ Xij ,

where qkj is non-zero only for connected cells.
-Ideally, qkj should be taken as the inverse of the mean first exit time for a
single molecule of species i from cell Ωk to Ωj . =⇒ qkj ∝ σ2/h2, where
σ2/2 is the macroscopic diffusion, h the local length.
The diffusion master equation can therefore be written

∂p(x, t)

∂t
=

D∑
i=1

K∑
k=1

K∑
j=1

qkj(xik + Mkj ,k)p(x1·, . . . , xi · + Mkj , . . . , xD·, t)

−qkjxikp(x, t) =: Dp(x, t).

The transition vector Mkj is zero except for Mkj ,k = −Mkj ,j = 1.

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 13 / 42



1. Stochastic modeling Spatial chemical kinetics

The reaction-diffusion master equation
“RDME”

Combining reactions with diffusions,

∂p(x, t)

∂t
= (M+D)p(x, t).

-An approximation! Valid when

ρ2 � h2 � σ2τ∆,

ρ the molecular radius, τ∆ average molecular survival time.
-Once formulated, any algorithm for sampling from the CME can also
simulate the RDME. For a spatially resolved model, most of the simulation
time is spent on diffusion events.
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1. Stochastic modeling Spatial chemical kinetics

Unstructured meshes

-Mean first exit time only known for very simple geometries (e.g. circles).
-How to handle complicated geometries?

Attempt to converge in
expectation to the macroscopic diffusion equation. Briefly, a numerical
method applied to ut = σ2/2 ∆u yields the discretized form

du

dt
=
σ2

2
Du.

-Define ϕij = E Ω−1
j xij . By linearity of the diffusion intensities, the

diffusion master equation implies

dϕij

dt
=

K∑
k=1

|Ωk |
|Ωj |

qkjϕik −

(
K∑

k=1

qjk

)
ϕij ,

⇐⇒
dϕT

i ·
dt

= QϕT
i · .
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1. Stochastic modeling Spatial chemical kinetics

Assuming point-wise convergence of the numerical discretization →
diffusion PDE, the consistency in this interpretation ensures convergence
in distribution to the correct Brownian motion as the mesh-size h→ 0.
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2. Computations by examples

(Forward) Computations by examples

I Bistable model

I Spatial oscillations in E. coli.
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2. Computations by examples

Bistable double-negative feedback system

EA
k1−→ EA + A EB

k1−→ EB + B

EA + B
ka


kd

EAB EB + A
ka


kd

EBA

EAB + B
ka


kd

EAB2 EBA + A
ka


kd

EBA2

A
k4−→ ∅ B

k4−→ ∅

Slow/intermediate/fast diffusion in a simple model of an S. cerevisiae cell
with internal structures in the form of a nucleus and a large vacuole.
Molecules are not allowed to diffuse across the membranes and enter the
organelles.
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2. Computations by examples

(a) Species A. (b) Species B.

“URDME” software www.urdme.org.
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2. Computations by examples
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(c) σ2 = 2× 10−13
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(d) σ2 = 4× 10−13

Figure: The total number of A and B molecules as the diffusion constant is
varied. Right: local bistability is lost.
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2. Computations by examples

MinD oscillations
Oscillations of proteins involved in the cell division of E. coli:

MinD c atp
kd−→ MinD m MinD c atp + MinD m

kdD−−→ 2MinD m

Min e+MinD m
kde−−→ MinDE MinDE

ke−→ MinD c adp + Min e

MinD c adp
kp−→ MinD c atp

“URDME” software www.urdme.org.
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2. Computations by examples
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Figure 3: (A) Geometry and mesh modeling of an E. Coli cell. (B) Temporal average
concentration of MinD protein as a function of position along the long axis of the E. Coli
cell (top), and the time series plot of the oscillations. (C) Six E. Coli cells of increasing
lengths, as specified in the parameter sweep described in Table 1. The color intensity shows
the temporal average concentration of MinD protein along the membrane. (D) Parameter
sweep shows how the relative concentration of MinD changes as the bacterium grows.
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3. Inverse formulations

Inverse or ‘Backwards’ formulations

I Reaction rates from observations...

I ...diffusion rates from observations

I “Evolutionary” optimal control setup

None of these formulations are in a ‘final’ state.
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3. Inverse formulations Reaction rates from observations

Rate coefficients from observations

Physics: linear birth-death process
with hidden parameters (k, µ):

∅ k−→ X

X
µx−→ ∅

}
Data:

50 100 150

10

20

30

Task: find the rates (k, µ).

Convergence: increasing the
temporal resolution:

50 100 150

10

20

30
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3. Inverse formulations Reaction rates from observations

Maximum Likelihood
In a nutshell: find the parameters (k , µ) that maximizes the probability of
obtaining the data we did observe (...)

-Model: let us assume independent observations, say, Gaussians around a
certain predicted value x(t),

P(X (t1) = x1|X (0) = x0) ∝ exp
(
−[x1 − x(t1|x0, t0)]2/2σ2

)
P(X (t2) = x2|X (t1) = x1) ∝ exp

(
−[x2 − x(t2|x1, t1)]2/2σ2

)
. . .

indep. =⇒P ∝ exp

− 1

2σ2

∑
i

[xi − x(ti |xi−1, ti−1)]2︸ ︷︷ ︸
minimize


-Linear birth-death ODE is x ′(t) = k − µx(t). Use for the predictor
x(t|xi , ti ) the solution to the ODE at time t given initial data (xi , ti ).
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3. Inverse formulations Reaction rates from observations

Linear birth-death
Results (µ)

0 200 400 600 800 1000

0.09

0.1

0.11

0.12

Sample length

E
s
ti
m

a
te

exact

S. Engblom (Uppsala University) Stochastics; Forward and Backward... 130326 27 / 42



3. Inverse formulations Reaction rates from observations

Dimerization

Slightly more difficult (nonlinear)

∅ k−→ X

X + X
νx(x−1)−−−−−→ ∅

}

10 20 30

10

20

30

10 20 30

10

20

30
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3. Inverse formulations Reaction rates from observations

Dimerization
Results (ν)
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3. Inverse formulations Reaction rates from observations

Maximum Likelihood using the CME

-Previously we used a Gaussian probability model. A better model is the
chemical master equation.

=⇒ P(X (ti ) = xi |X (ti−1) = xi−1) = p(xi , ti ) with p a solution to the
CME with initial data p(xi−1, ti−1) = 1.

-Observations are still independent (Markov property).
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3. Inverse formulations Reaction rates from observations

Dimerization
Results (ν)
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3. Inverse formulations Molecular movements from observations

Diffusion rates from observations

Physics: a single particle at position
Z (t) undergoing 2D Brownian
motion with hidden diffusion
constant: dZt = σ dWt , where
Zt = [Xt Yt ], Wt = [W

(x)
t W

(y)
t ].

Data: N = 1000 observations,
σ ∈ {1, 4}. Only ∼50 observations
from within the quarter circle where
σ = 4.

Task: determine σ1,2 and classify
the observations accordingly (hence
determine σ = σ(x , y)).
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3. Inverse formulations Molecular movements from observations

Expectation-Maximization algorithm

Briefly, an iterative algorithm which upon convergence produces a
Maximum-Likelihood estimator of (i) σ = [σ1 σ2] as well as of (ii) pnk , the
probability that the nth observation had diffusion constant σk .

1. Given values of σ1,2, we can estimate pnk . (Gaussian increments)

2. Given values of pnk , we can estimate σ1,2. (Sample means)

The iteration defined by iterating step #1 and 2 is (a version of) the
Expectation-Maximization algorithm.
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3. Inverse formulations Molecular movements from observations

Diffusion rates
Results iteration #2

σ = [0.97 1.95]
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3. Inverse formulations Molecular movements from observations

Diffusion rates
Results iteration #3

σ = [0.97 3.53]
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3. Inverse formulations Molecular movements from observations

Diffusion rates
Results iteration #6

σ = [0.98 3.68]
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3. Inverse formulations Optimal rates

Optimal control of rates

Enzymatic reaction of a complex into a product,

C + E
ν C ·E−−−→ P + E .

Combine with

∅
s(t)


µEE

E , ∅
kC


µCC

C , P
µPP−−→ ∅

such that E is under control through the signal s(t).
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3. Inverse formulations Optimal rates

Optimal control of rates (cont)

Maximize

M[P] :=

∫ T

0
ϕ(Pt) dt,

with a nonlinear payoff function ϕ(P),

ϕ(P) = 0, P ≤ c−
ϕ(P) = τ(P − c−), c− < P ≤ C+

ϕ(P) = τ(C+ − c−), C+ < P


Constraints on the production signal s

maxt∈[0,T ] s(t) ≤ S∞,∫ T
0 s(t) dt ≤ S1,

}
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3. Inverse formulations Optimal rates
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-Results from non-spatial deterministic ODE.
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3. Inverse formulations Optimal rates
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M2[P] :=
∫ T

0 ϕ(Pt) + ε|s ′(t)| dt
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3. Inverse formulations Optimal rates
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Conclusions

Summary & Conclusions

I Stochastic mesoscopic modeling in chemical kinetics can combine
simplicity with accuracy

I Spatial modeling is also possible and often necessary, computational
issues arise due to high temporal resolution

I Free software URDME (www.urdme.org)

I Examples of inverse formulations, many possibilities; I like to think
that it is important to be data- and question driven

I Input is welcome

Thank you for listening!
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