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1. Stochastic modeling

Stochastic modeling of biochemical reactions

Example: Bimolecular reaction X + Y — Z.
-What is the probability P(1X and 1Y reacts in the interval [0, At])?
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1. Stochastic modeling

Stochastic modeling of biochemical reactions

Example: Bimolecular reaction X + Y — Z.
-What is the probability P(1X and 1Y reacts in the interval [0, At])?

Xy X » P o< nx (“number of
X X-molecules™)
Y
X v » P ny
v » Px1/V
X v » P o At

= P(X + Y — Z in the interval [0, At]) = const - nxny At/V.

It so happens that this receipt describes a continuous-time Markov chain.
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1. Stochastic modeling

Kolmogorov's forward differential system/Master equation

Well-stirred stochastic chemical kinetics

-State x € ZP2, counting the number of molecules of each of D species.
-R specified reactions defined as transitions between these states,

W), N,, N e ZP*R (stoichiometric matrix)

under a transition intensity or propensity w;.

Let p(x, t) := P(X(t) = x|X(0)). Then the chemical master equation
(CME) is given by

Ip(x.t) _ -
T ;Wr(X‘i‘N) X+Nr,t ;Wr
=: Mp,

a gain-loss discrete PDE in D dimensions for the probability.
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1. Stochastic modeling

Mesoscopic spatial kinetics
Not well-stirred

-Not well-stirred in the whole volume, but if the domain Q is subdivided
into smaller computational cells Q; such that their individual volume |£2;]
is small, then diffusion suffices to make each cell well-stirred.
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Diffusion

Not well-stirred

A natural model of diffusion from one cell 2, to another cell £2; is

qkjXik
s X

Xik i

where qy; is non-zero only for connected cells.

-For best consistency, qy; should be taken as the inverse of the mean first
exit time. = qi; o 02/h?, where 02 /2 is the macroscopic diffusion, h the
local length.

The diffusion master equation can therefore be written

op(x, t) L&
a—t’ = 3 aui(xik + Mg )p(xa, . xi. + My, ..., xp., 1)
i=1 k=1 j=1
—qixikp(x, t) =: Dp(x, t).
The transition vector My; is zero except for My x = —M;; = 1.
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1. Stochastic modeling

The reaction-diffusion master equation
“RDME”

> The state of the system is now an array x with D x K elements.

» This state is changed by chemical reactions occurring between the
molecules in the same cell (vertically in x) and by diffusion/transport
where molecules move to adjacent cells (horizontally in x).

Hence when combining reactions with diffusions,

% — (M + D)p(x, t).
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1. Stochastic modeling

The reaction-diffusion master equation
“RDME”

» The state of the system is now an array x with D x K elements.

» This state is changed by chemical reactions occurring between the
molecules in the same cell (vertically in x) and by diffusion/transport
where molecules move to adjacent cells (horizontally in x).

Hence when combining reactions with diffusions,

3/’{{;’0 = (M +D)p(x, t).

-An approximation! Valid when
p2 < W < 0'2’7'A,
p the molecular radius, 7o average molecular survival time.

Bauer/Engblom (Uppsala University) 131005 6 /18



1. Stochastic modeling

Unstructured meshes

-Mean first exit time only known for very simple geometries (e.g. circles).
-How to handle complicated geometries? Attempt to converge in
expectation to the macroscopic diffusion equation. Briefly, a numerical
method applied to u; = 02/2 Au yields the discretized form

du o2

M _ 7 p.,

gt~ 2"
Can now obtain D from the numerical ¢2/2 D.

» Assume point-wise convergence of
the numerical discretization —
diffusion PDE

» Then the consistency in this
interpretation ensures convergence
in distribution to the correct

Brownian motion as the mesh-size
h—0
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2. URDME software

URDME

Unstructured Reaction-Diffusion Master Equation

External mesh

generator, pre- and Comsol
post-processing . .
engine. Multiphysics

Interface to core and
plug-in solvers, model

specification, custom Matlab
post-processing,
utility scripts.
I
Core and plug-in Core solver Plug-in solver
solvers. (NSM) (eg. DFSP)

www.urdme.org.
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2. URDME software

MinD oscillations

Oscillations of proteins involved in the cell division of E. coli:

MinD _c_atp <% MinD_m MinD_c_atp + MinD_m %% 2MinD_m
Min_e+MinD_m <% MinDE MinDE & MinD _c_adp + Min_e
MinD_c_adp ﬁ) MinD_c_atp
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2. URDME software
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2. URDME software
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3. Application to neuronal modeling

Application: multiscale neuronal model

lon Channel Gating (CTMC)

lon Channel
kinetics

@

Nchanne\s

Membrane dynamics (ODE)

Morphological
Information

-

Local Field Potential (PDE)

Joint work: Stefan Engblom, Pavol Bauer, Emil Berwald
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3. Application to neuronal modeling

Bottom level

lon channel gating

The gating process of ion channels can be mesoscopically described as

3am(Vim)No 2am(Vim)Ny am(Vim)No
= N = N, =

0 ~— 1 2 ~—
ﬁm(Vm)Nl 2f3m(vm)N2 35m(Vm)N3

again a continuous-time Markov chain. Output: N3, the number of open
gates.

For efficient model coupling we use “tau-leaping” - which is a consistent
time discretization method (Euler method):

Xn1=Xp =Y NP (w(Xn)7),

X state variable, P, Poisson random variable, w, propensity, and 7
timestep.
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Middle level

Membrane dynamics

o
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information extracted :
using the Trees toolbox &
s s a5 4 45 5 55 6 6‘5 -
> SyStem Of ’ ’ Time [i.OOe-OSs] ’ |

current-balance and

. . dV, i
cable equations is solved | = ¢, —" + E ~iN5(£)[Vm(t) — Ei]
. dt :
for each time step 7 ieC,
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3. Application to neuronal modeling

Top level

Maxwell's equations, potential form

We seek the electric field intensity E in terms of the electric scalar
potential V,

E=-VV.

Trans-membrane current /,, is scaled with the compartement surface area
and coupled as a current source,

0 1
~V- (aVV—i—aoaraVV) =o'l

with conductivity o and permittivity €. Finally, the time dependent
potential V is solved via finite element methods.
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Top level

Geometry coupling

» Bottom and middle level:
compartments (cylindrical volumes)

» Coupling with PDE requires a mesh

» Approximation with curves much
more efficient than volumetric
elements
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3. Application to neuronal modeling

Coupled solution
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Conclusions

Summary & Conclusions

» Stochastic mesoscopic modeling in chemical kinetics can combine
simplicity with accuracy

» Spatial modeling is also possible and often necessary, consistency
through numerical methods

» Free software URDME (www.urdme.org), organized in loosely
coupled layers, easy to extend and modify

» Sample neuronal application: coupling very different types of models
was possible thanks to this software architecture

Thank you for listening
Input and exchange of ideas is very much welcome!
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