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Outline

Intro: data for inspiration & the modeling challenge
1. Computational modeling...

2. ...numerical analysis

3. Worked examples

Summary

Joint work with and/or input from:

> Mia Phillipson, Gustaf Christoffersson @ Medical Cell Biology, Uppsala university
» Ruth Baker, Dan Wilson @ Math Institute, University of Oxford

»> Pavol Bauer @ Scientific computing, Uppsala university

» Augustin Chevallier @ ENS Cachan/INRIA Sophia Antipolis
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Wound healing around transplant

Recruitment of white blood-cells
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_ Intror data for inspiation & the modeling challengs |
Migrating cells

Gradient sensing

(Uppsala University) 171113 IPAM/UCLA 4 /40



_ Intror data for inspiation & the modeling challengs |
Colon crypts

Stem cells
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_ Intror data for inspiation & the modeling challengs |
The modeling challenge

“How to think”

Aim: to develop realistic and useful computational models of populations
of living cells.

“Realistic” flexible and understandable (= analyzable) numerical
models, that in the longer perspective can incorporate all
conceivable relevant processes

“Useful” (1) fully explanatory (including emergent behavior), (2) test
hypotheses, (3) predictive value, (4) help to build an
argument in cases where many factors are unknown
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Risk of over-modeling
“...help to build an argument in cases where many factors are unknown...”

Rough endoplasmic
reticulum (ER)

microtubues”
{part of cytoskelaton)

lysosome

Caution:

> really detailed, or,

smooth
end i 5 )

S > imaginary accuracy, or,

Golgi complex
lipid droplet

> just a plain overfit?

PLC
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_ntro: data for inspiration & the modeling challenge |
Rest of the talk

1. Computational modeling: the aim is a single framework
2. Analysis in that framework: propagation of uncertainties & errors

3. llustrations
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Computational modeling

inner-outer idea
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Immediate idea: one type of model describing an individual cell (“inner
scale”), coupled together with a type of model at the population level

(“outer scale™).
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Computational modeling

inner-outer idea
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Immediate idea: one type of model describing an individual cell (“inner
scale”), coupled together with a type of model at the population level
(“outer scale™).

Challenge: the aim is a single (analyzable) framework. So: {inner workings
of singel cells, sensatory input/output, extracellular space, population
mechanics, ...}

(Uppsala University) 171113 IPAM/UCLA 9 /40



One model to rule them all?

Real-world property Model implication
“noisy”  stochastic
species discreteness discrete state
spatial inhomogeneous grid-based
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One model to rule them all?

Real-world property Model implication
“noisy”  stochastic
species discreteness discrete state
spatial inhomogeneous grid-based

The RDME
-A spatial continuous-time Markov chain stand out as a promising
alternative. This is usually called the “Reaction-Diffusion Master

Equation”.
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1 Computational modeling... |
The idea 1

inner scale: RDME

Inside a cell, reactions and diffusion
of various molecules take place.

The rates for these events
determines what happens and when
in a stochastic, event-driven
simulation.

repeat
pick a random number
sample what happens and when
execute this event

until done

WWw.urdme.org
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One model to rule them all?
(cont)

-Cells are also discrete noisy objects, occuping space. Is there a
“cell-population RDME"?

-A difference is that cells move due to (1) mechanics/pushing, (2) active
movements/crawling.
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. L Compuationalmodeling.. |
The idea 2

outer scale

Cellular pressure, propagated by a connecting spring model. The “flow” of
cells is driven by a gradient in this pressure (Darcy's law).
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1 Computational modeling... |
The idea 2

outer scale: DLCM

From three basic assumptions:
1. thermal movements are ignored
2. rapid equilibrium of pressure

3. movements only into less
crowded voxels

one derives a (discrete) Laplacian
with certain BCs and source terms.

Hence rates... hence events. “Discrete Laplacian Cell Mechanics” (DLCM).
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Coupling of scales

Observation #1: since both the inner scale and the outer scale are formed

in continuous time, there is one and only one way of correctly coupling
them together.
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Coupling of scales

Observation #1: since both the inner scale and the outer scale are formed

in continuous time, there is one and only one way of correctly coupling
them together.

Observation #2: the two types of models can be expected to take place at
different temporal scales. Approximation: evolve the inner scales one step
in time (e.g., in parallel), then connect at the outer scale.

-In fact, one can think of all sorts of computational tricks like this. Often:
accept a small(?) error for computational efficiency.
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Perhaps the main message

Terms & conditions. Want to use these models when either one of
» stochasticity

> species discreteness
> spatial inhomogeneities

make a difference. Or else an ODE would work just as well! Hence the
model itself is likely sensitive to perturbations in anyone of these.
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Perhaps the main message

Terms & conditions. Want to use these models when either one of
» stochasticity

> species discreteness
> spatial inhomogeneities

make a difference. Or else an ODE would work just as well! Hence the
model itself is likely sensitive to perturbations in anyone of these.

Designing/understanding numerical methods: either we do
» An analysis by analogy/fingerspitzengefiihl...

» Or, using the Lax principle: if the numerical physics ~ the wanted
“true” physics (consistency), then the numerical solution — the true
solution (convergence) IFF the numerical physics is stable
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Notation

Local physics, e.g. in a single voxel

-State X € ZP, counting the number of each of D
species/agents/compartments.

-Events/reactions are transitions between these states,

PG Ny, N € ZP*R (stoichiometric matrix)

with propensity w, : Z_’f —- Ry, r=1.R
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Notation

Local physics, e.g. in a single voxel

-State X € Z2, counting the number of each of D
species/agents/compartments.

-Events/reactions are transitions between these states,

PG Ny, N € ZP*R (stoichiometric matrix)

with propensity w, : Z_’f —- Ry, r=1.R

-Poisson representation

t
X(t)=X(0) - S_N,N, </ w(X(s)) ds) ,
p 0
each 1, a unit-rate Poisson process.
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Notation
Spatial physics

Total volume Q subdivided into small enough voxels €2; such that the local
physics is an accurate model.

» The state of the system is now an array X with D x K elements; D
species Xj;, i = 1,..., D, counted separately in K voxels,
j=1...,K.

» This state is changed by local physics events (vertically in X) and by
transport into adjacent voxels (horizontally in X).
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S i meealanas |
Local physics

Per voxel (e.g. reactions)
Same model in K voxels, j =1,..., K,

Xji(t) = X35(0) — zr: Npilly; (/Ot wii (X j(s)) dS) :

fori=1,...,D species.
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Transport mechanism

Across voxels (e.g. diffusion)

Linear model (convection/diffusion): transport from one voxel Q; to
another voxel €, according to

qijXij

X,’j — X,’k,

where gjj is non-zero only for connected voxels.

Xi(t) =X;(0) — Znyk </0tq,ijU ) Zﬂ,kJ (/th,kj «(s )ds)
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Computational framework
RDME

Combining reactions with transport events we arrive at

X(t) =X;(0 ZNHHU </ W,J-(X.J(s))ds)
_Zk:”?jk (/0 qiXii(s dS) +Z“,/g (/ qirgXik (s )ds)
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Assumptions
Local physics first...

Recall: CTMC X(t) € Z? governed by transitions

x 2N x N, r=1.R, NezP*R

or, to get some ODE-feeling, “X’(t) = —Nw(X)".
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Assumptions
Local physics first...

Recall: CTMC X(t) € Z? governed by transitions

x 2N x N, r=1.R, NezP*R

or, to get some ODE-feeling, “X’(t) = —Nw(X)".

Norm ||x||; ;== I"x, x € zP.
Assumptions: x, y € ZP,
(i) —1"TNw(x) < A+allx], (“l-outward bound”)
(il) (—1TNY2w(x)/2 < B+ B1||xll; + B2 |x|I} (“1-outward absolute bound")

(i) [wr(x) =wr(y)l < Le(P)lIx = yll, r=1,..., R, and [Ix]|, V llyl, < P
The "blue assumptions”.
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Assumptions
...then add space

Recall: CTMC X(t) € Z2*K with transitions

qukxl

W,k(XA*) ij
e X.’k — Nr, X,’j E— X,‘k,

Xk
k =1...K voxels, i = 1...D species, r = 1...R reactions. To get
“PDE-feeling”,

v = —Nu(v) + Q v,
~—~—
e.g. =V-IV

where Vi ~ E[X,’kQ;l].
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Assumptions
...then add space

Recall: CTMC X(t) € Z2*K with transitions

qukxl

W,k(XA*) ij
e X.’k — Nr, X,’j E— X,‘k,

X

k =1...K voxels, i = 1...D species, r = 1...R reactions. To get
“PDE-feeling”,

v = —Nu(v) + v,

Q
~—
e.g. =V-IV

where Vi ~ E[X,’kQ;l].
Assumptions:
(iv) wik(x) = Quu ('), “density dependent”
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2 numerical analysis |
A priori

_ K _
Norms: ”X”I,l = Zj:l X klly = I"X1, X1 = ZU Xi

With suitable initial data...
> Elsupscio ) [X(5)]17,] bounded, any p > 1

» if X(0) = Y(0) a.s., and if Y(t) is obtained by d-perturbing the
transition intensities (w, — (1 £ 0)w;), then

lim B[ X(t) — ¥(1)|2] = 0.
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2 numerical analysis |
A priori

_ K _
Norms: ”X”I,l = Zj:l X klly = I"X1, X1 = ZU Xi

With suitable initial data...
> Elsupscio ) [X(5)]17,] bounded, any p > 1

» if X(0) = Y(0) a.s., and if Y(t) is obtained by d-perturbing the
transition intensities (w, — (1 £ 0)w;), then

lim B[ X(t) — ¥(1)|2] = 0.

-Actually, if both X and Y are bounded, then

E[IX(t) - Y(1)|[*] = 0(3).
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Analysis: Multiscale variable splitting
Set-up: €, h

Consider the separation of scales:

> species are either abundant ~ ¢!

, or appear in low copy numbers ~ 1
> rate constants are either fast ~ 1, or slow €

= rescaled variable X(t) = X(t) ~ 1.
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Analysis: Multiscale variable splitting
Set-up: €, h

Consider the separation of scales:

> species are either abundant ~ ¢~ 1

, or appear in low copy numbers ~ 1
> rate constants are either fast ~ 1, or slow €

= rescaled variable X(t) = X(t) ~ 1.

Multiscale splitting methods:

“Hybrid", Y(t) all Poisson processes driving an abundant species are
replaced with mean drift terms, M(t) =~ t, so a
“deterministic-stochastic hybrid”

“Numerical”, Y(")(t) discrete step h; low copy number variables are first
simulated in [t, t 4+ h) letting abundant species be frozen at
time t, next abundant species are integrated in [t, t + h)
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Analysis of errors

For certain explicit exponents (u, v)...

Multiscale error
Under the (Assumptions) above,

> E[[7(t) - K(0)]2) = O(H+ 4 M/2+/2+)
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Analysis of errors

For certain explicit exponents (u, v)...

Multiscale error
Under the (Assumptions) above,

> B[ 7(t) - K(1)|[2] = O(M + 2/

Time-discretization error
Under the (Assumptions) above, then if the processes are bounded,

> E[|YM(2) — ¥(£)]1%] = O (h(e? + €“+V)) + O (h?€2¥)
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Example: catalytic process

“Stress test” of theory
(A, C) ~ ¢, (B, D) ~ 1, diffusiona ¢ ~ ¢, diffusiong p ~ 1.

KAB cdaA
A+B X5 C+B A == §
b,
kCD dp,AB
C+D — A+ D B ;b—A 0
b
kpB(B—1)
B+B ———— D
kgD
100 100 o
= - // -
// // Z
7 4
0(61/2 //// _ //
S0t g stad {8 Py
o " “’10'1 /// o« h E
~
o ’// P o //
/// 7
1072 b 1 -
//
: . 102 :
1078 102 107" 100 1072 107" 100
€ h
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Modeling framework

RDME & DLCM

<7
SO

outer scale

inner scale

units

diffusion between voxels

reactions in a voxel

#molecules

RDME

28 / 40
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Modeling framework

RDME & DLCM
units inner scale outer scale
RDME  #molecules reactions in a voxel diffusion between voxels
DLCM  #cells (model) pressure-driven movement

Where (model) is one of {ODE, SDE, RDME}.

-Work still to be done: analyze the DLCM following the outlined RDME
theory.
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Cellular communication: delta-notch
Classical model from Coller et al. J. theor. Biol. 183, 1996

Delta active —u— Notch activated

Notch inactive —K ‘— Delta inactivation

F1G. 1. Diagrammatic representation of the effective feedback
loop between Notch and Delta in neighbouring cells. Details of the
Notch signalling pathway are omitted for clarity. Key: - Delta;

Notch.

-One cell develops high Notch, the other low Notch (black/white
patterning).
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Cellular communication: delta-notch

Inner scale: ODE, outer scale: spatial stochastic

K< D> X =l +] K[> [ [=ote] +]
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Non-trivial dynamics in tumour
Mambili-Mamboundou et al., Math. Bio. 249, 2014, & Chaste

Proliferating zone

Quiescent layer

Necrotic core

(Uppsala University) 171113 IPAM/UCLA 31/ 40



Non-trivial dynamics in tumour

Inner scale: non-spatial stochastic, outer scale: spatial stochastic

-Finding (emergent behavior): increasing the surface means increasing

oxygen intake = steady-state is unstable.
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Pattern formation 1: colonization
In vitro results from Hallatschek, et al., PNAS 104, 2007

E. coli | S. cerevisiae

-Through colonization the red/green gene wins.
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In silico colonization

Inner scale: non-spatial stochastic, outer scale: spatial stochastic
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Pattern formation 2: protrusions
In vivo results from Cohen, et al., Cell 19, 2010
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Protrusions
In vivo results from Cohen, et al., Cell 19, 2010
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Protrusions model

In silico model from Hadjivasiliou, et al., J. R. Soc. Interface 13, 2016

(1) Direct, (2) protrusion mediated, and (3+4) non-symmetric protrusion-junctional.
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L Worked oamples |
Delta-notch: differential weighting of signals

Inner scale: spatial stochastic, outer scale: spatial stochastic

(KT ) (=]t (KT > (=]t +]

(KT > 1) [=]o][+] (KI<I<D > [=]][+]
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Summary

» Microscopy data, mostly for inspiration...

» “How to think”: realistic & useful models, through
flexible/understandable/generalizable
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Summary

» Microscopy data, mostly for inspiration...

» “How to think”: realistic & useful models, through
flexible/understandable/generalizable

» 1. Modeling: inner/outer scale with RDME/DLCM one suitable such
combination, consistency through time-continuous coupling,
event-based computational framework

» 2. Analysis: the RDME framework, stability, analysis of basic
numerical methods

v

3. Examples: flexible coupling cell-to-cell /cell-to-environment
(solutions in URDME @ GitHub, www.urdme.org)
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o semmay |
Thanks

Programs, Papers, and Preprints are available from my web-page.
Thank you for the attention!

(Uppsala University)
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