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1. The Case: national-scale epidemics VTEC

The Case: national-scale epidemics

I Ongoing research to better understand the spread of verotoxinogenic
E. coli O157:H7 (VTEC O157:H7) in the Swedish cattle population

I Zoonotic pathogen (animal → human) of great public health interest,
causing enteroheamorrhagic colitis (EHEC) in humans (∼500 cases
anually in Sweden, cost per case ∼24kSEK)

I “Understand” means to determine the dominating mechanisms in the
dynamics, evaluate the effect of counter measures, investigate “what
ifs”...

I Substantial amount of data available:
I individual-level cattle data from 2005 and onwards (“events”)
I geographical and meteorological data
I longitudal studies of farms
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1. The Case: national-scale epidemics VTEC

VTEC epidemics
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1. The Case: national-scale epidemics VTEC

VTEC epidemics
in short

Infected animals show no signs of the disease!
S. Engblom (Uppsala University) Data-driven computational Epidemics 170306 5 / 30



1. The Case: national-scale epidemics VTEC

Event data
by European Union law

REPORTER WHERE ABATTOIR DATE EVENT ANIMALID BIRTHDATE

83466 83958 0 2009-10-01 2 SE0834660433 1997-04-04
83958 83466 0 2009-10-01 1 SE0834660433 1997-04-04
83958 83829 0 2012-03-15 2 SE0834660433 1997-04-04
83829 83958 0 2012-03-15 1 SE0834660433 1997-04-04
83829 83958 0 2012-03-15 4 SE0834660433 1997-04-04
54234 83829 0 2012-04-11 1 SE0834660433 1997-04-04
83829 54234 0 2012-04-11 2 SE0834660433 1997-04-04
83829 83958 0 2012-04-11 5 SE0834660433 1997-04-04

Total: 18 649 921 reports and 37 221 holdings

Events

I Exit (death, n=1 438 506)

I Enter (birth, n=3 479 000)

I Internal transfer (ageing, n=6 593 921)

I External transfer (transport between holdings, n=732 292)
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1. The Case: national-scale epidemics VTEC

Event data
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1. The Case: national-scale epidemics VTEC

Meterological data
by SMHI
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1. The Case: national-scale epidemics Computational modeling

Best practise
Modeling and parametrization in epidemics

Typically:

1. Highly coarse-grained models, e.g. “mosaic” ODEs, combined with
rule of thumbs, and various types of data averaged and understood as
fluxes and source terms

2. For a parameter proposal, a single model run is used to obtain a
residual of some kind wrt some measured data

3. What parameter combination minimizes ‖residual‖some norm?

-On the one hand, what is the uncertainty of the model so obtained?

-On the other hand, the problem is not easy! The topology of the model
might be the research question. Data is scarce and expensive to collect...
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1. The Case: national-scale epidemics Computational modeling

Forming a model
a priori thoughts

The dynamics/epidemics is quite likely stochastic, nonlinear, spatially
inhomogeneous...

Designing/understanding computational models: either we do

I “mosaic approach” relying on fingerspitzengefühl...

I or, relying on the Lax principle: if the numerical physics ≈ the
wanted “true” physics (consistency), then the numerical solution →
the true solution (convergence) IFF the numerical physics is stable
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1. The Case: national-scale epidemics Computational modeling

Local model
“SISE”

Model states: Susceptible, Infected

State transitions

I −→ S at rate ∝ I (t)

S −→ I at rate ∝ S(t)ϕ(t)

80% of the holdings consist of <100 individuals. A suitable model for
(S , I ) is therefore a continuous-time Markov chain.

Environmental infectious pressure (plain ODE)

dϕ

dt
=

I (t)

S(t) + I (t)
− β(t)ϕ(t) + (...)
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1. The Case: national-scale epidemics Computational modeling

Global model
Stochastic reaction-transport framework

Put X(i)
t = [Sij , Iij , ϕi ]

T
t for j ∈ {calves, young stock, adults} and

i = 1, . . . ,∼40,000 holdings.

dX(i)
t = Sµ(i)(dt)︸ ︷︷ ︸

local SISE -model+local events

−
∑

j∈C(i)

Cν(i ,j)(dt) +
∑

j ; i∈C(j)

Cν(j ,i)(dt)

︸ ︷︷ ︸
global events+physics

.

Data now goes into all these forward operators.

The above general framework is implemented in SimInf (GitHub).
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1. The Case: national-scale epidemics Computational modeling

Numerical split-step method
Set-up

Local physics first, then global;

X̃(i)
n+1 = X(i)

n +

∫ tn+1

tn

Sµ(i)(X̃(i)(s); ds),

X(i)
n+1 = X̃(i)

n+1 −
∫ tn+1

tn

∑
j∈C(i)

Cν(i ,j)(X(i)(s); ds)

+

∫ tn+1

tn

∑
j ; i∈C(j)

Cν(j ,i)(X(i)(s); ds)

Assume (certain assumptions). Then

I E[suptn∈[0,t] ‖Xn‖pl ] bounded, any p ≥ 1 (stability)

I E[‖Xn − X(tn)‖2] = O(h), h = maxn(tn+1 − tn) (convergence)
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1. The Case: national-scale epidemics Computational modeling

Parallel implementation
Dependency-aware scheduling via task-based framework

6 core task execution trace; red
tasks are dependent steps (requiring
thread synchronization). 0
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1. The Case: national-scale epidemics Computational modeling

Sample simulation
∼9 years of actual data

(∼ 108 data base events plus ∼ 109 infectious events during 9 years simulated in 15s on a
desktop)

S. Engblom (Uppsala University) Data-driven computational Epidemics 170306 15 / 30



1. The Case: national-scale epidemics Parameter estimation and outcomes

Feasibility of parameter estimation
Synthetic data (“inverse crime”)

Setup: determine k̂ = arg mink G (k),

G (k)2 = M−1
M∑
i=1

‖F ◦ X(i)
simulated(k)−F ◦ Xinput(k

∗)‖2,

F a “summary statistics”/“measurement filter” (...)

Using M ∈ {10, 20, 40} simulations for

G and N = 20 iterations of an

optimization routine:

M Residual 12 cores 32 cores

10 0.174 46.6 min 30.2 min
20 0.090 94.2 min 61.5 min
40 0.036 189.3 min 123.7 min

15000

20000

25000

30000
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parameter value

G
(k

)

correct
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1. The Case: national-scale epidemics Parameter estimation and outcomes

Parameter estimation
Real data

126 holdings sampled regularly during 38 months; ∼17 swipe samples per group

of 3 animals. Probability(test positive|n individuals infected), n ∈ {0, 1, 2, 3}
estimated via detailed studies a priori.
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1. The Case: national-scale epidemics Parameter estimation and outcomes

Parameter estimation
Real data, but after testing the equivalent synthetic situation first!

Setup: determine k̂ = arg mink G (k),

G (k)2 = M−1
M∑
i=1

‖F ◦ X(i)
simulated(k)−F∗measured‖2,

F is now the probabilistic map from state X to sample {0, 1}.
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1. The Case: national-scale epidemics Parameter estimation and outcomes

Outcome

I On the one hand, “an answer”,
a parametrized model

I More importantly, and usually
from mistakes/misfits: a better
understanding of the dynamics,
of the interplay between
parameters, an efficient
procedure to find optimal
models among suggestions...

Finding #1: decay β = β(t) required in the Swedish climate.

Finding #2: a mathematical analysis reveals a finite-time extinction in the
stochastic model, contrary to a corresponding deterministic model.

“The purpose of computing is insight, not numbers.” (R. Hamming)
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2. Outlook The role of the Lax principle

The role of the Lax principle
Complex modeling situations

On the one hand, convergence to a well-defined “truth” from consistency
and stability is neccessary...

...but it’s not enough. Parameters need to be observable too. And
observable from data that can actually be collected!

=⇒ Understanding the limits is important, knowing what you cannot do is
a good thing! Negative reasoning is a good take-away.

(http://izquotes.com)
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2. Outlook Model of models: the role of test equations

The role of test equations
Model of models!

Classical model y ′ = λy , one parameter λ ∈ C
Study convergence yh → y as h→ 0, but what about yh,N → y with N
the # observations to estimate λN ≈ λ?

=⇒ Linear birth-death model y ′ = k − µy , a model of a source and a sink.

Such sources/sinks typically occur in more than one place, e.g.,

S ′ ∝ I − ϕS ,
ϕ′ ∝ I − ϕ,

(hence only one of the birth-constants, the “ks”, can be non-dimensionalized away).

-Is it doable to get (k , µ) from observations?

-Negative reasoning: if it won’t work when almost everything is known, it
won’t work when confronted with a more realistic situation...
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2. Outlook Model of models: the role of test equations

Data
N = 50 trajectories, sampled 10 times each
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2. Outlook Model of models: the role of test equations

Posterior
MCMC using exact likelihood
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3. Bringing holistic computing into the classroom Why design

Holistic computing to the classroom
It’s all about design!

Design, transitive verb:

to create, fashion, execute, or construct according to plan

Design as a task requires:

1. a working “forward model” — (I tend to stop here!)

2. a way to find the parameters

3. a method to make it plausible that the design is sound

4. communication of the result
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3. Bringing holistic computing into the classroom A worked example: Applied finite elements
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3. Bringing holistic computing into the classroom A worked example: Applied finite elements

A huge task
...solved in pieces

“The design constraints are the time until a certain amount of hormone
has been emitted. Additional requirements are robustness to
manufacturing errors and to model errors.”

“Your task is to investigate the physics and the numerical modeling
associated with this problem, design the torus so that it fulfills certain
conditions and requirements, and communicate the design and the
qualities of the design in a convincing way. Your results should support an
expert committe in reaching a decision concerning the design of a
product.”

Part A 1D simplification, show convergence of adaptive FEM

Part B 2D simplification, implement in Matlab (assembly, solving)

Part C 3D using FEniCS, final design
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3. Bringing holistic computing into the classroom A worked example: Applied finite elements

Evaluation comments

Student voices:

I “The project was very enjoyable, and I liked very much that the
course was so project-driven. Having a large “final project” that you
build upon continually, rather than three disjoint assignments, was
great and I think more courses should follow that recipe.”

I “I gotta say, the assignments were rather hard. But I feel like I’ve
learned so much and I think the assignments probably are the most
important part of the course.”

I “I really liked working with the project. It really sparked an interest
for finite element methods for me, and I feel like I learned a lot.”

(On the teacher’s side: helps to motivate what goes in or out of a course...)
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Summary

Summary

I Case of national-scale computational modeling in Epidemics,
incorporating large amounts of data (data bases, internet)

I Consistent modeling and the Lax principle =⇒ well-posedness,
stability, consistency, convergence

I Efficient simulation, numerical method designed in order to expose
parallelism (∼ 108 data base events plus ∼ 109 infectious events
during 9 years simulated in 15s on a desktop)

I =⇒ Parametrization of a national-scale model solved in SimInf
(GitHub), interesting findings when fitting parameters to data

I At the meta-level: the actual role of stability, consistence,
observability, test equations...

I Discrepancy wrt what we tend to teach

I =⇒ A worked example of “PBL Light”
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Summary
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Summary

Thanks!

Programs, Papers, and Preprints are available from my web-page.
Thank you for the attention!
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