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A kind of overview talk...
...but with several special cases/models/applications...

For details: Programs, Papers, and Preprints are available from my
web-page.
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Brownian motion

Example: Particle diffusing in a fluid.

(micro) — (stoch) The stochastic model is simpler but random (error:
microscale effects in a statistical sense only).

(stoch) — (meso) Discrete space approximation (error: finite h > 0).
The mesoscopic stochastic model is a continuous-time Markov chain.
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Chemical reactions

Example: Bimolecular reaction X + Y — Z.

-Required: a model of physics in the zoomed in situation.
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Chemical reactions
(Locally) well-stirred

Example: Bimolecular reaction X + Y — Z in a volume V.

-What is the probability P(1X and 1Y reacts in [0, At])?

Well-stirred, then
v > P o nx (“number of X-molecules™)
Y > P ny
N Y ] > Px1/V
7 > P At

. v = P(X+Y —Zin[0,At]) =
¥ const - nxny At/V.

As At — 0 we recover again a continuous-time Markov chain.
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_ “Why": a case study in controlled stochastic focusing
Case study: the SFE (Why noise?)

Open-loop slowly fluctuating enzyme system

@ <'u_E @ SFE-assumptions:
R —
Og . ac > 1 (high influx of C)

[ary

2. k> ag + pe (comparably slow

OCC: 0 V Hyp
@ @ @ a enzyme fluctuations)

<k_ @ 3. k> 1 (strong enzyme to substrate
coupling)
QE
4. E* =N small (<10
@ OE + [LE (<10)

-Very basic motif; low copy numbers, nonlinear...
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Stochastic focusing

Stochastic vs. deterministic (well-stirred)

> Figure: Steady-state mean of C

(“response”) as a function of the
mean of E* ("“signal”)

—&— stochastic
—=&— deterministic i

25|

5 > The large difference (log scale!l) is a
= 20 consequence of stochastic focusing
o 15

e}

» Originally proposed as a signal
detection mechanism

0 0.2 0.4 .06 0.8
log 1o((E))

-Note.' We||-Stirred case (no Space)! Can show that there exists spatial stochastic focusing as well...
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Stochastic focusing (cont)
Signal detection, really?

0 2 4 6
log ,,(mean) log, ,(variance)

0 1 2 3

Top: output noise as a function of average E*, bottom: sensitivity to
parameter perturbations (histograms from 10,000 trials).
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Closed-loop slowly fluctuating enzyme system
SFE with negative feedback

A B
f(x)=max(0,K(x-x,))
@ N @
AN f4 K=tang
o==>0—@—02
l<}: @ % >
| X, X
1]

The transition E — E* now has rate ag(1 + f(x)) instead, with x either
C or P. Note: with x = C this mechanism has very recently been
observed experimentally!
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Controlled Stochastic Focusing

- Top: Open- and Closed Loop responses to
g
2 a change in N = E 4+ E*, bottom:
B responses to perturbations in parameters.
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e
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Some focused conclusions...

» Dramatic noise reduction and increased robustness, very accurate
control possible (note: 10 molecules!)

> In fact, a certain deterministic model very closely predicts the
controlled system

» Of course, this analysis and insight is only meaningful in the presence
of noise

= There are many more examples where noise, discreteness, and
nonlinearities make a huge impact and where effective deterministic
models are very difficult to derive.
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_ The framework: event-based mesoscopic R & D
Back to the details...

Mesoscopic well-stirred kinetics

Assuming a homogeneous probability of finding a molecule throughout the
local volume (and an energy which is independent on position).

-State X € Z?, counting the number of molecules of each of D species.
-Reactions are transitions between these states,

x X, 5 N,, N € ZP*R (stoichiometric matrix)

where the propensity w;, : Z_? — Ry, r =1...R, is the probability of
reacting per unit of time.

= Jump SDE formulation: dX; = —Np(dt)
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_ The framework: event-based mesoscopic R & D
Back to the details...

Mesoscopic well-stirred kinetics

Assuming a homogeneous probability of finding a molecule throughout the
local volume (and an energy which is independent on position).

-State X € Z2, counting the number of molecules of each of D species.
-Reactions are transitions between these states,

x X5 Ny, N € ZP*R (stoichiometric matrix)

where the propensity w, : Z_LE — Ry, r =1...R, is the probability of
reacting per unit of time.

= Jump SDE formulation: dX; = —Np(dt) = —Np(w(X¢—); dt) such
that E[pu(w(x); dt)] = w(x) dt.
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_ The framework: event-based mesoscopic R & D
Back to the details...

Mesoscopic spatial kinetics

Assuming that the domain £ has been subdivided into small enough

computational cells €; such that diffusion suffices to make each cell
well-stirred.

» The state of the system is now an array X with D x K elements; D
chemically active species Xj;, i = 1,..., D, counted separately in K
cells, j=1,...,K.

» This state is changed by chemical reactions occurring between the

molecules in the same cell (vertically in X) and by diffusion/transport
where molecules move to adjacent cells (horizontally in X).
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Reactions

By assumption, each cell is well-stirred and consequently the jump SDE is
valid as a description of reactions,

where p is now R-by-K; E[u,;]dt™1 = propensity of the rth reaction in
the jth cell.
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S < framework: event-based mesoscopic R & D
Diffusion

A natural model of diffusion from one cell Q) to another cell ; is

qkiXik
#} X

Xik i>

where qy; is non-zero only for connected cells.

Assuming that the diffusion constants are the same for all species,
dX; = E(—vT + v)(dt),

where [E is D-by-K of all 1's, and v is K-by-K; E[vyj] = qiiXj dt.
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The reaction-diffusion jump SDE
“RDME”

Combining reactions with diffusions we arrive at
dX; = —Np(dt) + E(—v T + v)(dt).
-An approximation, valid when
p2 < h < 0‘27‘A,

p the molecular radius, 7o average molecular survival time.
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S < framework: event-based mesoscopic R & D
Outlook

Event-based mesoscopic framework

Figure: Primal mesh (thin), dual mesh
(blue). The nodal dofs are the # of
molecules in each dual cell.

Local physics within each small voxel,
connected through transport mechanisms
(diffusion).
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N rstuctured meshes
Unstructured meshes

Consistency in mean

-Idea: converge in expectation to the macroscopic diffusion equation. A
numerical method applied to u; = 02/2 Au yields the discretized form

du o?
M _ 7 pa.
g 2°M

-Concentration ¢;; = E[ijlx,-j]. By linearity of the diffusion intensities,

d@lj K |Qk’q K .
—2 =% Q.| 9Pk~ > " aik | @i
dt k:1| j’ ' k=1 ' ’
dgoz— T

> —— = e
dt @i

S. Engblom (Uppsala University) 150515 19 / 42



Weak convergence

Consistency in mean

Key observation: by linearity, the diffusion CTMC/jump SDE over the
unstructured grid has an expected value which coincides with the exact
solution to the deterministic numerical method.

If the latter converges as the mesh h — 0 (to the solution of the diffusion
PDE), then the former converges in mean value.
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_ Convergence, finite element methods and backward analysis
The FEM

A compact summary

Consider the strong formulation u; = 02/2 Au in Q.

Multiply by a test-function v € V and integrate...

1. Variational form (Green's theorem): find u € V
s.t. (v, ur) = —02/2(Vv,Vu) for Vv € V, where (f,g) = [, fg dx.

2. A FEM is obtained by approximating V ~ V}, = span;p; C V.

3. With up = " ui(t)p; we get Mu, = —a2/2 Au; M = (i, ¢;),
A = (Vi, Vyj).
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FEM convergence

Mu; = —02/2 Au, or, u; = —02/2 M~*Au = ¢2/2 Du.
1. Converges in L2, ||up — ul| = O(h?) as h — 0, under very mild
assumptions on the mesh.
2. Under stringent conditions on the mesh, the maximum principle holds.

3. If these conditions are violated, “negative” diffusion take place (must
be truncated).

4. Backward analysis: in this case the solution satisfies exactly a
perturbed equation &i; = V - (62(x)/2 x Vii), where & can be
explicitly obtained, ||& — o|| is small, and where ||i — u|| < C||6 — o||.

-Challenges: (i) convergence in distribution — retrieving the correct

Brownian motion, (ii) convergence with reactions, (iii) getting to grip of
when it actually matters...
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R ' of subdifTusion
Modeling of subdiffusion

Microscale random walks

Joint PDF for the jump x and time until the next jump t,

W(x, t) = B(t) A().

Expected waiting time 7* = [ t(t) dt
Jump length variance ¥2 = [, [|x/|3 A(x) dx
Characterization:

» 7* and X2 finite = Brownian motion

» diverging 7* with finite ¥ = subdiffusion
» diverging ¥2 with finite 7* = superdiffusion
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N ' odeling of subdiffusion
Subdiffusion

Random walk

> Gaussian jump length PDF A(x) = % e7||xH§/(40'2)’ Y2 =20%< 00
(47o?) /
a—1 «
> Mittag-Leffler waiting time PDF ¢(t) = — En.o (- (5) ). 77 =0
T T
> Mean square displacement <||x||§(t)> = % t*
Macroscopic model
Fractional PDE
feY 2
P y_KkoaUu,  Ke=Z
ate 7
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N ' odeling of subdiffusion
Subdiffusion

Mesoscopic model

Assuming ordinary diffusion on a mesh of interest can be simulated:

» Approximation through a Markov chain over N internal states,

tO(—].

0= () e
i=1

» In the ith internal state, the diffusion of u; is ordinary

> At the macroscopic level U = Z,N:l u;j diffuses anomalously according
to the subdiffusion FPDE

-Hence again, this numerical method is consistent in the sense of mean
value with the macroscopic description (as (h, N) — (0, c0)).
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Ongoing research...

Bimolecular reactions

k(1,1
k/Ti ("i+"j)

2
k
A+B = G Ai+ B; = Ck Ai+B=G
L/ L/ Ty 4
0.06 : o U 0.15] . o U(x) 008 o U
005 ¥ 4 V(xt) - & VX : - 2 V(xt)
- o - W) ) 005 . - W)
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< o = >
5003 :.fAA; 5 50.04
0.02) & % 0.05] o
0.01 £ i 002
4 A A
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 1
X
10X 107 1ox10” 10107
) o UGt
o s £ V(xb) o 2 V(x)
- W(x) - W)
d 6
5 “ Vixh) 3 5,
© W)
2] 2]
5 05 0 05 1 R 0 05 1 5 05 0 05 1
X X X
FPDE known FPDE not known FPDE not known

S. Engblom (Uppsala University) 150515 26 / 42



Application: multiscale neuronal model

lon Channel
kinetics

\/_\

Morphological
Information

-

S. Engblom (Uppsala University)

lon Channel Gating (CTMC)

Membrane dynamics (ODE) Nehannels

Local Field Potential (PDE)



Bottom level

lon channel gating

e, e,
([01.11) (111D H (211D i
([01.00) ([11,(0]) ([21.[0)
— o~ =

3 2 1

‘ ([31.[1]) I
([31.[0])

Gating process: sodium channels.
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Bottom level

lon channel gating

The gating process of ion channels can be mesoscopically described as

—_—

3am(Vm)N0 2am(Vm)N1 Ocm(Vm)Nz
— Ny — N, =
IBm(Vm)Nl 2Bm(vm)N2 3/3m(vm)N3

3

again a continuous-time Markov chain. Output: N3, the number of open
gates.

For efficient model coupling we freeze the voltage dependency for a short
time-step 7 (“Euler method/1st order Strang split”):

t+7
Xepr = Xe — / Np(Vin(t), w(Xs-); ds).
t
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N utiscale neuronal model
Middle level

Membrane dynamics

Iy
i
i

e

-
A
-

S
[ R

Cable equation circuit.
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N ' tiscale neuronal model
Middle level

Membrane dynamics

'TREES
3@;?;!? toolbox

» Morphological
information extracted
using the Trees toolbox

Transmembrane voltage V., [1.00e+00 V]
Current injection L, [pA]

s 5 s 4 45 5 55 6 eis » Syst f
Time [1.00¢-03 s] ystem O
ny current-balance and
I, = cm dm + Z NiN5(E)[Vin(t) — Ei] cable equations is solved
t ieC, for each time step 7
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N B i e
Top level

Maxwell's equations, potential form

Electric field intensity E in terms of the electric scalar potential V,
E=-VV.

Trans-membrane current /,, is scaled with the compartement surface area
and coupled as a current source,

0 1
-V (aVV—l—an,EVV) = Q—CIm7

with conductivity o and permittivity €. The time dependent potential V is
solved via finite element methods.
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N B i e
Top level

Geometry coupling
» Bottom and middle level:
compartments (cylindrical volumes)

» Coupling with PDE requires a free
space mesh
» Modeling the neuron via 3D curves
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Sample simulation
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Application: national-scale epidemics

» Modeling the spread of verotoxinogenic E. coli O157:H7 (VTEC
O157:H7) in the Swedish cattle population

» Important zoonotic pathogen (animal — humans) of great public
health interest, causing enteroheamorrhagic colitis (EHEC) in humans
(~500 cases anually in Sweden)

» Infected animals show no signs of the disease!

» Cattle is a main reservoir of the bacteria, ongoing research to better
understand the epidemiology of VTEC O157:H7 in the cattle
population

» Mixed event-based approach:

» Data-driven simulation using all registred cattle events 2005-2013
» Stochastic simulation of within-herd dynamics (i.e. mesoscopic)
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Data-driven
REPORTER WHERE ABATTOIR DATE EVENT ANIMALID BIRTHDATE
83466 83958 0 2009-10-01 2 SE0834660433 1997-04-04
83958 83466 0 2009-10-01 1 SE0834660433 1997-04-04
83958 83829 0 2012-03-15 2 SE0834660433 1997-04-04
83829 83958 0 2012-03-15 1 SE0834660433 1997-04-04
83829 83958 0 2012-03-15 4 SE0834660433 1997-04-04
54234 83829 0 2012-04-11 1 SE0834660433 1997-04-04
83829 54234 0 2012-04-11 2 SE0834660433 1997-04-04
83829 83958 0 2012-04-11 5 SE0834660433 1997-04-04
Total: 18 649 921 reports and 37 221 holdings
Events
» Exit (n=1 438 506)
» Enter (n=3 479 000)
> Internal transfer (n=6 593 921)
» External transfer (n=732 292)
S. Engblom (Uppsala University) 150515
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Events
(Note: pop. density UK:Sweden is = 10:1)
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National-scale epidemics
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Epidemic model
“Locally well-stirred” (SISg)

Model states: Susceptible, Infected, in ~40,000 holdings and in 3 age
categories { calves, youngstock, adults}.

Environmental infectious pressure

dy; a) ;i li(t)

T a Zj Si,j(t) + I,',j(t) B B(t)QD,‘(t)

Finding: 8 = f(t) required in the Swedish climate.
State transitions at node / in the jth age category,
Rate 5,"_,' — /,"j = ’}/jgo,'(t)s,',j(t)
;i (t
Rate /,'J—)S,'JZL
0j
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Sample simulation

http://user.it.uu.se/~stefane/animations/collection/siminf/
siminf_sample.gif
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http://user.it.uu.se/~stefane/animations/collection/siminf/siminf_sample.gif
http://user.it.uu.se/~stefane/animations/collection/siminf/siminf_sample.gif

Parallel performance
Feasibility of parameter estimation
Setup: determine k = arg min, G(k),

M
G(k)2 = M LSS 0 X ea(K) — S 0 Xpu (k) 12,
i=1
S a “smoothing statistics” (...)
Using M e {10, 20, 40} trajectories u=10, fine-grained scheduling

for G and N = 20 iterations of an
optimization routine:

&

speedup over serial
@

M Residual 12 cores 32 cores

10 0.174 46.6 min 30.2 min
20 0.090 94.2 min 61.5 min ol
40 0.036 189.3 min  123.7 min 0 10 20 %0

threads
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Summary

» Mesoscopic stochastic R & D, event-based computational
framework: fairly intuitive modeling, coupling and up/down-scaling,
analysis of numerical methods, efficient simulation algorithms

» Terms & conditions. If used when required: accurately capturing a
stochastic nonlinear phenomenon is a very hard constraint for
method’s development!

» Consistency with macroscopic equations. The numerical method'’s
convergence to the macroscopic equation implies convergence in
mean (/weak convergence) of the corresponding stochastic model,
FEM, backward analysis

» Multiscale neuronal application solved in URDME (GitHub): coupling
different types of models

» Epidemiological national-scale model solved in SimInf (GitHub):
data-driven simulation, parallel performance
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Thank you for the attention! J
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