Pathwise analysis for split-step methods and multiscale variable splitting in spatial stochastic kinetics

Stefan Engblom

Div of Scientific Computing, Dept of Information Technology, Uppsala University

SciCADE 2015, September 14, 2015

Outline

1. Framework

The model: stochastic R & D from the bottom and up The framework: event-based mesoscopic R & D top down

2. Analysis

Assumptions and *a priori* results Split-step methods Multiscale variable splitting methods

3. Applications

Multiscale neuronal model National-scale epidemics

Summary

Brownian motion

Example: Particle diffusing in a fluid.

 $(micro) \rightarrow (stoch)$ The stochastic model is simpler but random (*error:* microscale effects in a statistical sense only).

 $(\text{stoch}) \rightarrow (\text{meso})$ Discrete space approximation (*error*: finite h > 0).

The mesoscopic stochastic model is a continuous-time Markov chain.

Chemical reactions

Example: Bimolecular reaction $X + Y \rightarrow Z$.

-Required: a model of physics in the zoomed in situation.

Chemical reactions

Example: Bimolecular reaction $X + Y \rightarrow Z$.

-Required: a model of physics in the zoomed in situation.

-Assuming locally well-stirred, what is the probability $P(1X \text{ and } 1Y \text{ reacts in } [0, \Delta t])$ in a volume V?

Chemical reactions

(Locally) well-stirred

Example: Bimolecular reaction $X + Y \rightarrow Z$.

 $-P(1X \text{ and } 1Y \text{ reacts in } [0, \Delta t])$ in a volume V...

Well-stirred, then

- $P \propto n_X$ ("number of X-molecules")
- $P \propto n_Y$

$$\blacktriangleright$$
 $P \propto 1/V$

•
$$P \propto \Delta t$$

$$\implies P(X + Y \to Z \text{ in } [0, \Delta t]) =$$
const $\cdot n_X n_Y \Delta t / V.$

As $\Delta t \rightarrow 0$ we recover again a continuous-time Markov chain.

Back to the details...

Mesoscopic well-stirred kinetics

Assuming a homogeneous probability of finding a molecule throughout the *local* volume.

-State $X \in \mathbf{Z}_{+}^{D}$, counting the number of molecules of each of D species. -Reactions are transitions between these states,

$$X \xrightarrow{w_r(X)} X - \mathbb{N}_r, \qquad \mathbb{N} \in \mathbf{Z}^{D \times R}$$
 (stoichiometric matrix)

where the propensity $w_r : \mathbf{Z}^D_+ \to \mathbf{R}_+$, r = 1...R, is the probability of reacting per unit of time.

Jump SDE formulation: $dX_t = -\mathbb{N}\mu(dt)$, (where $E[\mu_r(w_r(X); dt)] = E[w_r(X)] dt$), Poisson representation: $X_t = X_0 - \mathbb{N}\Pi(\int_0^t w(X_{s-}) ds)$, (Π_r a unit-rate Poisson process).

Back to the details...

Mesoscopic spatial kinetics

Assuming that the domain Ω has been subdivided into small enough computational cells Ω_j such that diffusion suffices to make each cell well-stirred.

- ► The state of the system is now an array X with D × K elements; D chemically active species X_{ij}, i = 1,..., D, counted separately in K cells, j = 1,..., K.
- ► This state is changed by chemical reactions occurring between the molecules in the same cell (vertically in X) and by diffusion/transport where molecules move to adjacent cells (horizontally in X).

Reactions

By assumption, each cell is well-stirred and consequently the jump SDE is valid as a description of *reactions*,

$$d\mathbb{X}_t = -\mathbb{N}\mu(dt),$$

where μ is now *R*-by-*K*; $E[\mu_{rj}]dt^{-1} =$ propensity of the *r*th reaction in the *j*th cell.

Diffusion (as an important example of transport)

A natural model of diffusion from one cell Ω_k to another cell Ω_j is

$$\mathbb{X}_{ik} \xrightarrow{q_{kji}\mathbb{X}_{ik}} \mathbb{X}_{ij},$$

where q_{kji} is non-zero only for connected cells.

For a certain array multiplication \otimes (...),

$$d\mathbb{X}_t = \mathbb{S} \otimes (-\boldsymbol{\nu}^T + \boldsymbol{\nu})(dt),$$

where S is 1-by-K of all 1's, and ν is K-by-K-by-D; $E[\nu_{kji}]dt^{-1} =$ diffusion rate of the *i*th species from cell Ω_k to cell Ω_j .

The reaction-diffusion jump SDE "RDME"

Combining reactions with diffusions we arrive at

$$d\mathbb{X}_t = -\mathbb{N}\mu(dt) + \mathbb{S} \otimes (-\nu^T + \nu)(dt).$$

-An approximation, valid when

$$\rho^2 \ll h^2 \ll \sigma^2 \tau_\Delta,$$

 ρ the molecular radius, τ_{Δ} average molecular survival time.

Outlook Event-based mesoscopic framework

Figure: Primal mesh (thin), dual mesh (blue). The nodal dofs are the # of molecules in each dual cell.

Local physics within each small voxel, *connected* through transport mechanisms (diffusion).

Motivation...

... for the effort with stating assumptions and a priori results

Scalar ODE+Euler forward,

$$y' = f(y),$$

 $y_{n+1} = y_n + hf(y_n), \quad y_n \approx y(t_n) = y(n \cdot h).$

Assume:

- 1. f is (locally) Lipschitz, $(|f(x) f(y)| \le L_Y |x y|$ whenever $|x| \lor |y| \le Y$),
- 2. a priori stability, $|y| \vee |y_n| \leq Y$

Then, straightforwardly, $e_n = |y_n - y(t_n)|$ is O(h).

Problem: assumptions and analysis are both incomplete without a verification of the 2nd assumption above.

-Additional complications in the stochastic setting (...).

Assumptions & a priori: well-stirred case

Recall: CTMC $X(t) \in \mathbf{Z}^{D}_{+}$ governed by transitions

$$X \xrightarrow{w_r(X)} X - \mathbb{N}_r, \quad r = 1...R, \quad \mathbb{N} \in \mathbf{Z}^{D \times R},$$

or, to get some ODE-feeling, " $X'(t) = -\mathbb{N}w(X)$ ".

Norm
$$||x||_I := I^T x$$
, $x \in \mathbf{Z}^D_+$, for min_i $I_i = 1$.

Assumptions & a priori: well-stirred case

Recall: CTMC $X(t) \in \mathbf{Z}^{D}_{+}$ governed by transitions

$$X \xrightarrow{w_r(X)} X - \mathbb{N}_r, \quad r = 1...R, \quad \mathbb{N} \in \mathbf{Z}^{D \times R},$$

or, to get some ODE-feeling, " $X'(t) = -\mathbb{N}w(X)$ ".

Norm
$$||x||_{I} := I^{T}x, x \in \mathbf{Z}_{+}^{D}$$
, for min_{*i*} $I_{i} = 1$.
Assumptions: $x, y \in \mathbf{Z}_{+}^{D}$,
(i) $-I^{T}\mathbb{N}w(x) \le A + \alpha ||x||_{I}$,
(ii) $(-I^{T}\mathbb{N})^{2}w(x)/2 \le B + \beta_{1} ||x||_{I} + \beta_{2} ||x||_{I}^{2}$,
(iii) $|w_{r}(x) - w_{r}(y)| \le L_{r}(P) ||x - y||, r = 1, ..., R$, and $||x||_{I} \lor ||y||_{I} \le P$.

Assumptions & *a priori*: well-stirred case Results

With suitable initial data...

- $E \sup_{s \in [0,t]} \|X_s\|_{I}^{p}$ bounded, any $p \ge 1$
- if $X_0 = Y_0$ almost surely, then $E ||X_t Y_t||^2 = 0$
- if $\alpha + \beta_2(p-1) < 0$, then $E ||X_t||_I^p$ bounded as $t \to \infty$

-Can also elaborate on continuity wrt parameter perturbations (...)

Split-step method

Set-up

Split into two sets of reaction pathways

$$\mathbb{N} = \left[\mathbb{N}^{(1)} \mathbb{N}^{(2)} \right], \qquad w(x) = \left[w^{(1)}(x); w^{(2)}(x) \right],$$

where $\mathbb{N}^{(i)}$ is *D*-by-*R_i*, $i \in \{1, 2\}$, $R_1 + R_2 = R$.

Method:

$$Y_{t+h/2} = Y_t - \sum_{r \in \mathcal{R}_1} \mathbb{N}_r \Pi_r \left(\int_t^{t+h/2} 2w_r(Y_{s-}) \, ds \right)$$
$$Y_{t+h} = Y_{t+h/2} - \sum_{r \in \mathcal{R}_2} \mathbb{N}_r \Pi_r \left(\int_{t+h/2}^{t+h} 2w_r(Y_{s-}) \, ds \right).$$

Split-step method

Results

Assume the (Assumptions) hold for both sub-systems. Then

•
$$E \sup_{s \in [0,t]} ||Y_s||_l^p$$
 bounded, any $p \ge 1$

•
$$E ||Y_t - X_t||^2 = O(h)$$
, any finite t

Assumptions & a priori: R&D case Recall: CTMC $\mathbb{X}(t) \in \mathbf{Z}_{+}^{D \times K}$ with transitions

$$\mathbb{X}_{\cdot,k} \xrightarrow{w_{rk}(\mathbb{X}_{\cdot,k})} \mathbb{X}_{\cdot,k} - \mathbb{N}_r, \quad \mathbb{X}_{ik} \xrightarrow{q_{kji}\mathbb{X}_{ik}} \mathbb{X}_{ij},$$

k = 1...K, i = 1...D, r = 1...R. To get "PDE-feeling",

$$\mathbf{u}_t = -\mathbb{N}u(\mathbf{u}) + \underbrace{Q}_{\approx \nabla \cdot \Sigma \nabla} \mathbf{u}.$$

Assumptions & a priori: R&D case Recall: CTMC $X(t) \in \mathbf{Z}_{+}^{D \times K}$ with transitions

$$\mathbb{X}_{\cdot,k} \xrightarrow{w_{rk}(\mathbb{X}_{\cdot,k})} \mathbb{X}_{\cdot,k} - \mathbb{N}_r, \quad \mathbb{X}_{ik} \xrightarrow{q_{kji}\mathbb{X}_{ik}} \mathbb{X}_{ij},$$

k = 1...K, i = 1...D, r = 1...R. To get "PDE-feeling",

$$\mathbf{u}_t = -\mathbb{N}u(\mathbf{u}) + \underbrace{\mathbf{Q}}_{\approx \nabla \cdot \Sigma \nabla} \mathbf{u}.$$

Assumptions:

- ▶ on the mesh, some natural and quite weak assumptions (...)
- reactions, as before, *plus*

(iv) $w_{rk}(x) = \Omega_k u_r(\Omega_k^{-1}x)$, "density dependent"

diffusion:

(i) $(x^{p-1} \odot \Omega)^T Qx \le R_p ||x||_p^p$, $p \ge 1$, $x \in \mathbf{R}_+^K$, consistency with *p*-norm decay of diffusion

Assumptions & *a priori*: R&D case Results

Norm
$$\|\mathbb{X}\|_{I,p}^{p} \equiv \sum_{k=1}^{K} \|\mathbb{X}_{\cdot,k}\|_{I}^{p} \Omega_{k}^{1-p} \quad (\approx \int_{V} \|\mathbf{u}\|_{I}^{p} dV).$$

With suitable initial data...

- only reactions: as before
- ▶ pure diffusion: $E \|X_t\|_{I,p}^p$ bounded in finite time, or even grows very slowly for $R_p \le 0$
- ▶ full R&D: $E \sup_{s \in [0,t]} ||X_s||_{I,p}^p$ bounded, any $p \ge 1$

Multiscale variable splitting

Set-up: ϵ , h

- Consider the separation of scales:
 - ▶ species are either abundant $\sim \epsilon^{-1}$, or appear in low copy numbers ~ 1 (on a per voxel basis!)
 - ► rate- and diffusion constants are either fast ~ 1, or slow € (per reaction/per species)
- \implies rescaled variable $\bar{\mathbb{X}}_t = \bar{\mathbb{X}}_{ij}(t) \sim 1.$

Multiscale variable splitting

Set-up: ϵ , h

- Consider the separation of scales:
 - ▶ species are either abundant $\sim \epsilon^{-1}$, or appear in low copy numbers ~ 1 (on a per voxel basis!)
 - ► rate- and diffusion constants are either fast ~ 1, or slow e (per reaction/per species)

$$\implies$$
 rescaled variable $\bar{\mathbb{X}}_t = \bar{\mathbb{X}}_{ij}(t) \sim 1.$

Multiscale splitting methods:

"Exact", $\bar{\mathbb{Y}}_t$ all Poisson processes driving an abundant species are replaced with mean drift terms, $\Pi(T) \approx T$

"Numerical", $\bar{\mathbb{Y}}_{t}^{(h)}$ discrete steps *h*; low copy number variables are first simulated in [t, t + h) letting abundant species be frozen at time *t*, next abundant species are integrated in [t, t + h)

Multiscale variable splitting

Results

Under the *a priori* conditions above and under similar (Assumptions) for the splitted system $\bar{\mathbb{Y}}_{t}^{(h)}$ (...), then

►
$$E \sup_{s \in [0,t]} \left\| \bar{\mathbb{Y}}_{s}^{(h)} \right\|_{I,p}^{p}$$
 bounded, any $p \ge 1$

•
$$E\|ar{\mathbb{Y}}_t^{(h)}-ar{\mathbb{Y}}_t\|^2=O(h)$$
, any finite t

-Additional conditions for this concerns the reaction topology: effectively fast reactions must not affect low copy number species (...)

Application: multiscale neuronal model

Bottom level

lon channel gating

Gating process: sodium channels.

Bottom level Ion channel gating

The gating process of ion channels can be mesoscopically described as

$$N_0 \underset{\beta_m(\mathbf{V}_m)N_1}{\overset{3\alpha_m(\mathbf{V}_m)N_1}{\rightleftharpoons}} N_1 \underset{2\beta_m(\mathbf{V}_m)N_2}{\overset{2\alpha_m(\mathbf{V}_m)N_1}{\rightleftharpoons}} N_2 \underset{3\beta_m(\mathbf{V}_m)N_3}{\overset{\alpha_m(\mathbf{V}_m)N_2}{\rightleftharpoons}} N_3,$$

again a *continuous-time Markov chain*. *Output:* N_3 , the number of open gates.

For efficient model coupling we freeze the voltage dependency for a short time-step τ ("split-step" or "1st order Strang split"):

$$X_{t+\tau} = X_t - \int_t^{t+\tau} \mathbb{N}\mu(V_m(t), w(X_{s-}); ds).$$

Middle level Membrane dynamics

Cable equation circuit.

Middle level

Membrane dynamics

- Morphological information extracted using the *Trees toolbox*
- System of current-balance and cable equations is solved for each time step τ

Top level Maxwell's equations, potential form

Electric field intensity E in terms of the electric scalar potential V,

$$\mathsf{E} = -\nabla V.$$

Trans-membrane current l_m is scaled with the compartement surface area and coupled as a current source,

$$-\nabla\cdot\left(\sigma\nabla V+\varepsilon_{0}\varepsilon_{r}\frac{\partial}{\partial t}\nabla V\right)=\frac{1}{\Omega_{c}}I_{m},$$

with conductivity σ and permittivity ε . The time dependent potential V is solved via finite element methods.

Sample simulation

Application: national-scale epidemics

- Modeling the spread of verotoxinogenic *E. coli* O157:H7 (VTEC O157:H7) in the Swedish cattle population
- Important zoonotic pathogen (animal → humans) of great public health interest, causing enteroheamorrhagic colitis (EHEC) in humans (~500 cases anually in Sweden).
- In Germany during the summer 2011, a particularly aggressive variant emerged, with 3,816 reported cases and 54 deceased.
- Infected animals show no signs of the disease!
- Cattle is a main reservoir of the bacteria, ongoing research to better understand the epidemiology of VTEC O157:H7 in the cattle population
- Mixed event-based approach:
 - Data-driven simulation using all registred cattle events 2005-2013
 - Stochastic simulation of within-herd dynamics (i.e. mesoscopic)

Data-driven

REPORTER	WHERE	ABATTOIR	DATE	EVENT	ANIMALID	BIRTHDATE
83466	83958	0	2009-10-01	2	SE0834660433	1997-04-04
83958	83466	0	2009-10-01	1	SE0834660433	1997-04-04
83958	83829	0	2012-03-15	2	SE0834660433	1997-04-04
83829	83958	0	2012-03-15	1	SE0834660433	1997-04-04
83829	83958	0	2012-03-15	4	SE0834660433	1997-04-04
54234	83829	0	2012-04-11	1	SE0834660433	1997-04-04
83829	54234	0	2012-04-11	2	SE0834660433	1997-04-04
83829	83958	0	2012-04-11	5	SE0834660433	1997-04-04

Total: 18 649 921 reports and 37 221 holdings

Events

- ▶ Exit (n=1 438 506)
- Enter (n=3 479 000)
- Internal transfer (n=6 593 921)
- External transfer (n=732 292)

Events

(*Note:* Germany:Sweden, pop. density \sim 10:1, area \sim 7:9)

Epidemic model

"Locally well-stirred" (SIS_E)

Model states: **S**usceptible, Infected, in \sim 40,000 holdings and in 3 age categories {*calves*, *youngstock*, *adults*}.

Environmental infectious pressure

$$\frac{d\varphi_i}{dt} = \frac{\alpha \sum_j I_{i,j}(t)}{\sum_j S_{i,j}(t) + I_{i,j}(t)} - \beta(t)\varphi_i(t)$$

Finding: $\beta = \beta(t)$ required in the Swedish climate.

State transitions at node *i* in the *j*th age category,

Rate
$$S_{i,j} \rightarrow I_{i,j} = \gamma_j \varphi_i(t) S_{i,j}(t)$$

Rate $I_{i,j} \rightarrow S_{i,j} = \frac{I_{i,j}(t)}{\delta_j}$

Sample simulation

http://user.it.uu.se/~stefane/animations/collection/siminf/ siminf_sample.gif

Summary

- Mesoscopic stochastic R & D, event-based computational framework: fairly intuitive modeling, coupling and up/down-scaling, simulation algorithms
- Terms & conditions. If used when required: accurately capturing a stochastic nonlinear phenomenon is a very hard constraint for method's development!
- ▶ Well-posedness, stability, convergence... of simple numerical methods
- Multiscale neuronal application solved in URDME (GitHub): coupling different types of models
- Epidemiological national-scale model solved in SimInf (GitHub): data-driven simulation

Acknowledgments

 \sim In order of appearance

- Augustin Chevallier (ENS Cachan)
- Pavol Bauer (UU)
- Emil Berwald (UU)
- Stefan Widgren (SVA)

Programs, Papers, and Preprints are available from my web-page. Thank you for the attention!