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Modelling chemical reactions

System size Ω

(# molecules)
Model Idea

. 102 Micro Movement of individual atoms/molecules

Collisions → (Possible) reactions

∼ 101–106 Meso Non-individual, assuming well-stirred mixture

A stochastic model is used for reactions

& 106 Macro “Average”; —in the limit of many molecules
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Diffusion-controlled kinetics

Model Assumption

BD (Smoluchowski) Brownian motion of individual molecules

CTMC (Master equation) Non-individual, (locally) well-stirred

SDE (Langevin) Continuous approximation

ODE (Reaction rate) Continuous, deterministic

-With a mesoscopic Continuous-Time Markov Chain, an accurate but
still manageable non-individual model is possible thanks to
stochasticity.

-There are many examples of when stochastic kinetics more easily
captures actual behavior...
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Multistability (Gardner/Cantor/Collins)

Figure 1: Solid: deterministic, dashed: stochastic.
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Stochastic resonance (Barkai/Leibler)

Figure 2: Solid: deterministic, dashed: stochastic.
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Stochastic focusing (Paulsson/Berg/Ehrenberg)

Figure 3: Nonlinear response to twofold signal increase; solid: partially
deterministic, dashed: fully stochastic.
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Well-stirred kinetics (Gillespie ’76, ’92, Gardiner, van Kampen)

Assumption #1: the chance of finding a molecule is equal throughout
the volume (homogeneous).

Assumption #2: the energy of a molecule does not depend on its
position in the volume (thermal equilibrium).

-Let the state vector x ∈ ZD
+ count the number of molecules of each

of D species.

-Let R specified reactions be defined as transitions between these
states,

x
wr(x)−−−−→ x− Nr, N ∈ ZD×R (stoichiometric matrix )

where each transition intensity or propensity wr : ZD
+ → R+ is the

probability of reacting per unit of time. This probability can be shown
to exist provided that the system is well-stirred!

Stefan Engblom, CSC/NA, Royal Institute of Technology (KTH), Stockholm, Sweden 9



Homogeneous kinetics Stockholm, February 2010

The chemical master equation is given by

∂p(x, t)

∂t
=

R∑
r=1

wr(x+ Nr)p(x+ Nr, t)−
R∑

r=1

wr(x)p(x, t)

=: Mp.

-A gain-loss discrete PDE in D dimensions for the probability density.

-Several exact simulation algorithms exist (“SSA”, “NRM”, ...);
determine what event and when.
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Stochastic simulation algorithm — direct method (Gillespie ’76)

0. Let t = 0 and set the state x to the initial number of molecules.

1. Compute the total reaction intensity W :=
∑

r wr(x). Generate
the time to the next reaction τ := −W−1 log u1 where u1 ∈ (0, 1)

is a uniform random number. Determine also the next reaction r

by the requirement that

r−1∑
s=1

ws(x) < Wu2 ≤
r∑

s=1

ws(x),

where u2 is again a uniform random deviate in (0, 1).

2. Update the state of the system by setting t := t+ τ and
x := x− Nr.

3. Repeat from step 1 until some final time T is reached.
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Not well-stirred:

-When the molecular movement (diffusion) is slow compared to the
reaction intensity — large local concentrations may easily build up.

-When some reactions are localised — e.g. depend on an enzyme
molecule situated at a precise position.

These conditions are not unusual for reactions taking place inside
living cells!
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Microscopic kinetics

• Molecular dynamics...
-Many different algorithms, usually very expensive simulations.

• Smoluchowski kinetics (diffusion-controlled limit): individual
coordinates of molecules, Brownian motion in space. The
Smoluchowski PDE evolves the spatial probability density in time
and the reactions are to be incorporated as boundary conditions.
-One exact algorithm: Green’s function reaction dynamics
(GFRD).
-Various software for approximations: “MCell”, “SmolDyn”,
“ChemCell”...
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Mesoscopic spatial kinetics

-Not well-stirred in the whole volume, but if the domain Ω is
subdivided into smaller computational cells Ωj such that their
individual volume |Ωj | is small, then diffusion suffices to make each
cell well-stirred.

Figure 4: Primal mesh (solid), dual mesh (dashed). The nodal dofs
are the # of molecules in each dual cell.
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• D chemically active species Xij for i = 1, . . . , D but now counted
separately in K cells, j = 1, . . . ,K.

• The state of the system is an array x with D ×K elements.

• This state is changed by chemical reactions occurring between
the molecules in the same cell (vertically in x) and by diffusion
where molecules move to adjacent cells (horizontally in x).
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Reactions

By assumption, each cell is well-stirred and consequently the master
equation is valid as a description of reactions,

∂p(x, t)

∂t
=Mp(x, t) :=

K∑
j=1

R∑
r=1

wr(x·j + Nr)p(x·1, . . . ,x·j + Nr, . . . ,x·K , t)

−
K∑
j=1

R∑
r=1

wr(x·j)p(x, t).
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Diffusion

A natural model of diffusion from one cell Ωk to another cell Ωj is

Xik
qkjxik−−−−→ Xij ,

where qkj is non-zero only for connected cells.

-Ideally, qkj should be taken as the inverse of the mean first exit time
for a single molecule of species i from cell Ωk to Ωj . =⇒ qkj ∝ σ2/h2,
where σ2/2 is the macroscopic diffusion, h the local length.

The diffusion master equation can therefore be written

∂p(x, t)

∂t
=

D∑
i=1

K∑
k=1

K∑
j=1

qkj(xik +Mkj,k)p(x1·, . . . ,xi· +Mkj , . . . ,xD·, t)

−qkjxikp(x, t) =: Dp(x, t).

The transition vector Mkj is zero except for Mkj,k = −Mkj,j = 1.
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The reaction-diffusion master equation (Gardiner, van Kampen)

∂p(x, t)

∂t
= (M+D)p(x, t).

-An approximation! Valid when

ρ2 ≪ h2 ≪ σ2τ∆,

ρ the molecular radius, τ∆ average molecular survival time.

-Once formulated, any well-stirred algorithm can simulate the
RDME. For a spatially resolved model, most of the simulation time is
spent on diffusion events.
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Formulation and consistency

-Mean first exit time only known for very simple geometries (e.g.
circles).

-A solution in the Cartesian case: ensure that the expected value
limits to the macroscopic diffusion equation.

Define φij = E Ω−1
j xij . By linearity of the diffusion intensities, the

diffusion master equation implies

dφij

dt
=

K∑
k=1

|Ωk|
|Ωj |

qkjφik −

(
K∑

k=1

qjk

)
φij ,

or simply

dφT
i·

dt
= QφT

i· .
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-FEM applied to the macroscopic equation ut = σ2/2∆u with
piecewise linear basis functions and inversion of the lumped
mass-matrix yields

du

dt
=

σ2

2
Du.

Assuming point-wise convergence FEM → diffusion PDE, the
consistency of this interpretation ensures convergence in distribution
to the correct Brownian motion as h → 0.
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Finite element discretization (Thomée)

α

β

(a) α+ β < π

α

(b) α < π/2

Figure 5: The critical angles for positive off-diagonal elements.

With Neumann boundary conditions,

Djk ≥ 0, Djj < 0,

K∑
k=1

Djk = 0.

The same sufficient conditions implies the maximum principle for
parabolic equations.
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Diffusion moments...

Using the exact equation for the covariance matrix C of the diffusion
process one can show:

-Standard deviation ∼
√
∥E xi·∥.

-Quotient between standard deviation and expected values is
∼ 1/

√
∥E xi·∥ and is small for species i with large copy numbers

=⇒ the expected value is a good approximation of the copy number.

The diffusion of such species can be evolved efficiently with mean
field equations.
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Time integration

Order the species Xi such that

Xi, i = 1, . . . , DL, have low copy numbers and

Xi, i = DL + 1, . . . , D, have high copy numbers.

Split the diffusion operator accordingly,

∂p(x, t)

∂t
= [M+DL]p(x, t) +DHp(x, t).

Strang splitting:

1. Advance pt = DHp from t to t+∆t/2

2. Advance pt = [M+DL]p by ∆t (stochastic algorithm)

3. Advance pt = DHp from t+∆t/2 to t+∆t
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Numerical simulations

-Deterministic diffusion is solved by the trapezoidal method:(
I − ∆t

2

σ2

2
DT

)(
xn+1
i·
)T

=

(
I +

∆t

2

σ2

2
DT

)
(xn

i·)
T
.

-Mesoscopic diffusion and reactions are simulated by NSM (Fange/Elf ).

Properties:

• Non-negativity of xij is preserved with a bound on ∆t.

• Total number of molecules of each species is conserved by the
diffusion.
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Bistable double-negative feedback system (Elf/Ehrenberg)

EA
k1−→ EA +A EB

k1−→ EB +B

EA +B
ka

kd

EAB EB +A
ka

kd

EBA

EAB +B
ka

kd

EAB2 EBA+A
ka

kd

EBA2

A
k4−→ ∅ B

k4−→ ∅

Slow/intermediate/fast diffusion in a simple model of an S. cerevisiae
cell with internal structures in the form of a nucleus and a large
vacuole. Molecules are not allowed to diffuse across the membranes
and enter the organelles.
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(a) Species A. (b) Species B.
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Figure 6: The total number of A and B molecules as the diffusion
constant is varied. Right: local bi-stability is lost.
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Oscillations of proteins involved in the cell division of Escherichia
coli bacterium:

-Five species, five reactions (Fange/Elf ).

-“URDME” software (Cullhed/Engblom/Hellander).
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• Mesoscopic stochastic kinetics (CTMC/master equation)
-well stirred chemical reactions

• Spatially inhomogeneous case:
-microscopic kinetics usually very expensive
-local well-stirredness implies the reaction-diffusion master
equation
-the RDME is computationally simpler

• Unstructured meshes: consistency with macroscopic equations

• Expensive but structurally simple diffusion =⇒ hybrid method

• Publicly available software ANSI-C99/Matlab/Comsol
“URDME”.
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