Uppsala, December 2009

Simulation of stochastic reaction-diffusion
processes on unstructured meshes

Stefan Engblom

CSC/NA
Royal Institute of Technology (KTH)

Uppsala, December 18, 2009

Stefan Engblom, CSC/NA, Royal Institute of Technology (KTH), Stockholm, Sweden 1



Uppsala, December 2009

Joint work with

Andreas Hellander, Lars Ferm, Per Lotstedt.

Stefan Engblom, CSC/NA, Royal Institute of Technology (KTH), Stockholm, Sweden 2



Outline

Uppsala, December 2009

Motivation for stochastic chemical kinetics
Well-stirred chemical kinetics

Spatially inhomogeneous kinetics
Unstructured meshes

Examples

Conclusions

Stefan Engblom, CSC/NA, Royal Institute of Technology (KTH), Stockholm, Sweden 3



Motivation Uppsala, December 2009

Modelling chemical reactions

System size (2 Model Idea

(# molecules)

< 102 Micro  Movement of individual atoms/molecules
Collisions — (Possible) reactions

~ 101109 Meso  Non-individual, assuming well-stirred mixture
A stochastic model is used for reactions

> 109 Macro “Average”; —in the limit of many molecules

-With a mesoscopic stochastic model, an accurate but still
manageable non-individual model is possible thanks to randomness

(both the micro- and the macroscopic models are deterministic).
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Well-stirred

Assumption #1: the chance of finding a molecule is equal throughout

the volume (homogeneous).

Assumption #2: the energy of a molecule does not depend on its

position in the volume (thermal equilibrium).

-Under these assumptions there is a favourable stochastic model of

chemical kinetics — a continuous-time Markov chain.

-Actual behaviour often easier to capture: multi-stability, resonance
and focusing effects.
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Well-stirred kinetics (Gillespie '76, '92, Gardiner, van Kampen)

-Let the state vector x € Zf count the number of molecules of each
of D species.

-Let R specified reactions be defined as transitions between the

states,

z 2, N,, N € ZP*% (stoichiometric matriz)
where each transition intensity or propensity w, : Zf — R is the
probability of reacting per unit of time. This probability can be shown

to exist provided that the system is well-stirred!
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The chemical master equation is given by

R

ap“”t Zwr +No)p(z + Ny t) = Y we(2)p(a, t)

r=1
=5 /\/lp.
-A gain-loss discrete PDE in D dimensions for the probability density.

-Several ezact Monte Carlo-type simulation algorithms exist (“SSA”,

“NRM”, ...); determine what event and when.
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Not well-stirred:

-When the molecular movement (diffusion) is slow compared to the

reaction intensity — large local concentrations may easily build up.

-When some reactions are localised — e.g. depend on an enzyme

molecule situated at a precise position.

These conditions are not unusual for reactions taking place inside

living cells!
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Mesoscopic spatial kinetics

-Not well-stirred in the whole volume, but if the domain (2 is
subdivided into smaller computational cells {2; such that their
individual volume |2, is small, then diffusion suffices to make each
cell well-stirred.
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Figure 1: Primal mesh (solid), dual mesh (dashed). The nodal dofs
are the # of molecules in each dual cell.
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e D chemically active species X;; for ¢ = 1,..., D but now counted

separately in K cells, j =1,..., K.
e The state of the system is an array x with D X K elements.

e This state is changed by chemical reactions occurring between
the molecules in the same cell (vertically in x) and by diffusion

where molecules move to adjacent cells (horizontally in x).
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Reactions

By assumption, each cell is well-stirred and consequently the master

equation is valid as a description of reactions,

Op(x,t)
— = t) =
5 —Mp(x. 1)
K R
ZZwT(X.j +Np)p(x1,. .., x5+ Npy oL x kL 8)
j=1r=1
—ZZU}T p(x,t).

j=1r=1

Stefan Engblom, CSC/NA, Royal Institute of Technology (KTH), Stockholm, Sweden 11



|nh0m0geneOUS kinetiCS Uppsala, December 2009

Diffusion

A natural model of diffusion from one cell €2}, to another cell €}; is
i
where ¢, is non-zero only for connected cells.

-Ideally, q; should be taken as the inverse of the mean first exit time
for a single molecule of species i from cell Q to Q;. = qg; x o%/h?,
where 02 /2 is the macroscopic diffusion, h the local length.

The diffusion master equation can therefore be written

D K K

8pxt
S‘S‘S‘qkj sz —|—Mk] k:) (Xl.,.. s X —I—Mkj,...,XD.,t)

i=1 k=1 j=1

—ijXikP(X> t) = Dp(x, t)

The transition vector My; is zero except for My, = —My; ; = 1.
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The reaction-diffusion master equation (Gardiner, van Kampen)

Oplx, 1) = (M + D)p(x,1t).
ot
-An approximation! Valid when
p° < h? < o’ra,
p the molecular radius, 7A average molecular survival time.

-Once formulated, any well-stirred algorithm can simulate the

RDME. For a spatially resolved model, most of the simulation time is

spent on diffusion events.
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Formulation and consistency

-Mean first exit time only known for very simple geometries (e.g.

circles).

-A solution in the Cartesian case: ensure that the expected value
limits to the macroscopic diffusion equation.

Define ¢;; = E Qj_lxij. By linearity of the diffusion intensities, the

diffusion master equation implies

do 1] 3

) k

j Z ] 10, | T P <quk> Pijy
k=1

or simply

dpl.
g = Qyp;..
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-FEM applied to the macroscopic equation u; = 0?/2 Au with

piecewise linear basis functions and lumped mass-matrix yields

du o2
™M _7 pu
i 21

With a good triangulation we have point-wise convergence FEM —
diffusion PDE and the consistency of this interpretation ensures

convergence in distribution to Brownian motion as A — 0.
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Bistable double-negative feedback system (E/f/Ehrenberg)

Ea-~5 Es+ A Ep ™% Ep + B
ko ka
Er+ B = FEsB EFgp+A=FgA
kd kd
ka ka
EAsB + B k:\ FisBy EpA+ A k:\ EgAs
d d
Al B 4,

Slow /intermediate/fast diffusion in a simple model of an S. cerevisiae
cell with internal structures in the form of a nucleus and a large
vacuole. Molecules are not allowed to diffuse across the membranes

and enter the organelles.
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(a) Species A. (b) Species B.
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Figure 2: The total number of A and B molecules as the diffusion
constant is varied. Right: local bi-stability is lost.
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Oscillations of proteins involved in the cell division of Escherichia

coli bacterium:
-Five species, five reactions (Fange/EIf).

“URDME” software (Cullhed/Engblom/Hellander).
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e Mesoscopic stochastic kinetics (CTMC /master equation)

~-well-stirred chemical reactions

e Spatially inhomogeneous case:
-local well-stirredness implies the reaction-diffusion master
equation

-unstructured meshes: consistency with macroscopic equations

e Expensive but structurally simple diffusion suggests hybrid

schemes.

e Publicly available software ANSI-C99/Matlab/Comsol
“URDME".
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